Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza...Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, a salt-sensitive cultivar, transcript levels were compared in roots of these two accessions as well as in the roots of two additional salt-tolerant indica genotypes, the landrace Pokkali and the recombinant inbred line IR63731. The aim of this study was to compare transcripts in the sensitive and the tolerant lines in order to identify genes likely to be involved in plant salinity tolerance, rather than in responses to salinity perse. Transcript profiles of several gene families with known links to salinity tolerance are described (e.g. HKTs, NHXs). The putative function of a set of genes identified through their salt responsiveness, transcript levels, and/or chro- mosomal location (i.e. underneath QTLs for salinity tolerance) is also discussed. Finally, the parental origin of the Saltol region in FL478 is further investigated. Overall, the dataset presented appears to be robust and it seems likely that this system could provide a reliable strategy for the discovery of novel genes involved in salinity tolerance.展开更多
Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HL...Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn--a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.展开更多
文摘Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, a salt-sensitive cultivar, transcript levels were compared in roots of these two accessions as well as in the roots of two additional salt-tolerant indica genotypes, the landrace Pokkali and the recombinant inbred line IR63731. The aim of this study was to compare transcripts in the sensitive and the tolerant lines in order to identify genes likely to be involved in plant salinity tolerance, rather than in responses to salinity perse. Transcript profiles of several gene families with known links to salinity tolerance are described (e.g. HKTs, NHXs). The putative function of a set of genes identified through their salt responsiveness, transcript levels, and/or chro- mosomal location (i.e. underneath QTLs for salinity tolerance) is also discussed. Finally, the parental origin of the Saltol region in FL478 is further investigated. Overall, the dataset presented appears to be robust and it seems likely that this system could provide a reliable strategy for the discovery of novel genes involved in salinity tolerance.
文摘Huanglongbing (HLB) is a devastating citrus disease that is associated with bacteria of the genus 'Candidatus Liberibacter' (Ca. L.). Powerful diagnostic tools and management strategies are desired to control HLB. Host small RNAs (sRNA) play a vital role in regulating host responses to pathogen infection and are used as early diagnostic markers for many human diseases, including cancers. To determine whether citrus sRNAs regulate host responses to HLB, sRNAs were profiled from Citrus sinensis 10 and 14 weeks post grafting with Ca. L. asiaticus (Las)-positive or healthy tissue. Ten new microRNAs (miRNAs), 76 conserved miRNAs, and many small interfering RNAs (siRNAs) were discovered. Several miRNAs and siRNAs were highly induced by Las infection, and can be potentially developed into early diagnosis markers of HLB. miR399, which is induced by phosphorus starvation in other plant species, was induced specifically by infection of Las but not Spiroplasma citri that causes citrus stubborn--a disease with symptoms similar to HLB. We found a 35% reduction of phosphorus in Las-positive citrus trees compared to healthy trees. Applying phosphorus oxyanion solutions to HLB-positive sweet orange trees reduced HLB symptom severity and significantly improved fruit production during a 3-year field trial in south-west Florida. Our molecular, physiological, and field data suggest that phosphorus deficiency is linked to HLB disease symptomology.