Increasing importance has been placed on particle shape implementation within discrete element mod elling (DEM) in order to more accurately reflect the nonspherical behaviour of the bulk material being handled. As c...Increasing importance has been placed on particle shape implementation within discrete element mod elling (DEM) in order to more accurately reflect the nonspherical behaviour of the bulk material being handled. As computational resources grow, complex particle shapes are increasingly being modelled as the associated simulation times become more realistic to provide timely solutions. The objective of this research is to assess particle shape descriptors through a digital image segmentation technique, and to further implement particle shape parameters into generation of corresponding irregular shaped DEM particles. Separated and lumped particle images were analysed and reconstructed through the devel opment of two distinct methodologies. Subsequently, various particle shape descriptors were obtained using combinations of image segmentation algorithms, including mathematical morphology processing, thresholding, edge detection, region growing, region splitting and region merging. DEM particles were subsequently created using particle shape results obtained above. Shape parameters of DEM particles were then examined and validated against the real particle shape parameters.展开更多
文摘Increasing importance has been placed on particle shape implementation within discrete element mod elling (DEM) in order to more accurately reflect the nonspherical behaviour of the bulk material being handled. As computational resources grow, complex particle shapes are increasingly being modelled as the associated simulation times become more realistic to provide timely solutions. The objective of this research is to assess particle shape descriptors through a digital image segmentation technique, and to further implement particle shape parameters into generation of corresponding irregular shaped DEM particles. Separated and lumped particle images were analysed and reconstructed through the devel opment of two distinct methodologies. Subsequently, various particle shape descriptors were obtained using combinations of image segmentation algorithms, including mathematical morphology processing, thresholding, edge detection, region growing, region splitting and region merging. DEM particles were subsequently created using particle shape results obtained above. Shape parameters of DEM particles were then examined and validated against the real particle shape parameters.