期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interaction of Seedling Germination, Planting Date, and Flumioxazin on Peanut Physiology under Irrigated Conditions
1
作者 Nicholas l. Hurdle timothy l. grey +2 位作者 Cristiane Pilon W. Scott Monfort Donn G. Shilling 《American Journal of Plant Sciences》 2020年第12期2012-2030,共19页
Diclosulam and flumioxazin applied preemergent (PRE) results in direct peanut exposure to these herbicides prior to seedling emergence. Flumioxazin has been reported to induce injury in adverse weather (</span>&... Diclosulam and flumioxazin applied preemergent (PRE) results in direct peanut exposure to these herbicides prior to seedling emergence. Flumioxazin has been reported to induce injury in adverse weather (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> cool-wet soil conditions) at crop emergence. Research at Ty Ty and Plains, Georgia evaluated the physiological effects of PRE herbicides to emerging peanut in 2018 and 2019. Peanut seed with variable germination and different planting dates were evaluated as additional factors. Peanut plant physiological measurements included electron transport (ETR), net assimilation rate (</span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;">), quantum yield of PSII (Φ</span><sub><span style="font-family:Verdana;">PSII</span></sub><span style="font-family:Verdana;">), and stomatal conductance to water vapor (GSW). Data were obtained from V3 to R1 peanut growth stages using a LiCOR 6800, along with stand counts and plant width measures. In 2018, diclosulam reduced peanut ETR when measured across multiple growing degree days (GDD) after planting, compared to the nontreated control (NTC). Flumioxazin reduced peanut ETR compared to the NTC, at several sample timings for each planting date. In 2018 and 2019 at both locations, flumioxazin impacted </span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;"> less than ETR, but was consistently similar to/or greater than the NTC. Peanut Φ</span><sub><span style="font-family:Verdana;">PSII</span></sub><span style="font-family:Verdana;"> responded similarly as </span><i><span style="font-family:Verdana;">A</span></i><sub><span style="font-family:Verdana;">net</span></sub><span style="font-family:Verdana;"> at each location and yr. GSW was variable in both years</span></span><span style="font-family:Verdana;">;</span><span style="font-family:Verdana;">however flumioxazin treated plants had higher GSW rates than other treated plants. Peanut stand counts, plant widths, and pod yields noted few differences compared to the physiological measures. Though some peanut plant physiological differences were noted when measured at varying GDD’s after planting with the different PRE treatments, planting date, and seed vigor, no specific trends were observed. Growers will often observe peanut injury from flumioxazin early in the season. However, it is transient and does not affect yield. 展开更多
关键词 Diclosulam FLUMIOXAZIN PEANUT Arachis hypogaea L. Photosynthesis Electron Transport
下载PDF
Susceptible and Glyphosate-Resistant Palmer Amaranth (<i>Amaranthus palmeri</i>) Response to Glyphosate Using C<sup>14</sup>as a Tracer: Retention, Uptake, and Translocation
2
作者 timothy l. grey Donn Shilling 《American Journal of Plant Sciences》 2018年第12期2359-2370,共12页
The foliar retention, absorption, translocation, and diffusion of glyphosate in glyphosate resistant-(R) and susceptible (S)-Palmer amaranth populations from seed collected in Georgia in 2007 were examined. The R popu... The foliar retention, absorption, translocation, and diffusion of glyphosate in glyphosate resistant-(R) and susceptible (S)-Palmer amaranth populations from seed collected in Georgia in 2007 were examined. The R population of Palmer amaranth had an elevated copy number of the EPSPS gene conferring the mechanism of resistance. When applications of 14C-glyphosate to a single leaf followed entire plant treatment with glyphosate, the distribution percentages were similar for R and S for the above and below treated leaves when harvested at 1, 6, 12, 24, and 48 hours after treatment (HAT). There were initially no differences between R and S at 1 HAT with an average of 8% absorption for both biotypes. However, data indicated that glyphosate absorption increased for R-Palmer amaranth reaching 41% within 6 HAT and was significantly different (P = 0.01) from the 28% absorbed by S-Palmer amaranth. Glyphosate resistant and susceptible Palmer amaranth averaged 44% 14C-glyphosate absorption by 24 HAT. There were no differences for 14C-glyphosate Bq/mg of plant tissue between R and S for the above the treated leaf and below the treated leaf portions of plants at 1, 6, 12, 24, or 48 HAT. However, root accumulation of 14C-glyphosate in plant tissue was significantly greater by 12 HAT for the roots of R (1.21 Bq/mg) than for S (0.51 Bq/mg). The treated leaf of the R-Palmer amaranth plants exhibited greater translocation of 14C-glyphosate in Bq/mg of tissue than the susceptible over time, indicating no detrimental effect or cost of fitness due to EPSPS gene amplification. Additionally, there were no differences in glyphosate retention in leaf discs assays between R and S biotypes. In spite of an average of 6.5 Bq efflux out of R and S leaf discs after 15 minute, only 0.4 Bq was retained after 150 minutes. Glyphosate was not retained over time in the leaf discs for R and S, and there were no biotype differences within bathing times. However, the rate of efflux (the slope of the curves) was greater for the R biotype. These data support the reported gene amplification non-target site glyphosate resistance mechanism in Palmer amaranth. 展开更多
关键词 AMARANTHUS palmeri S. Wats Absorption Becquerel’s Glyphosate-Resistance Herbicide RESISTANCE Translocation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部