期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Role of the IL-33-ST2 axis in sepsis 被引量:18
1
作者 Hui Xu Heth r. Turnquist +1 位作者 rosemary Hoffman timothy r. billiar 《Military Medical Research》 SCIE CAS 2017年第1期50-60,共11页
Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are characterized, it is important to understand their roles in sepsis. Interleukin 33(IL-33) is a recently desc... Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are characterized, it is important to understand their roles in sepsis. Interleukin 33(IL-33) is a recently described member of the IL-1 family that is widely expressed in cells of barrier tissues. Upon tissue damage, IL-33 is released as an alarmin and activates various types of cells of both the innate and adaptive immune system through binding to the ST2/IL-1 receptor accessory protein complex. IL-33 has apparent pleiotropic functions in many disease models, with its actions strongly shaped by the local microenvironment. Recent studies have established a role for the IL-33-ST2 axis in the initiation and perpetuation of inflammation during endotoxemia, but its roles in sepsis appear to be organism and model dependent. In this review, we focus on the recent advances in understanding the role of the IL-33/ST2 axis in sepsis. 展开更多
关键词 SEPSIS INTERLEUKIN-33 ST2
下载PDF
Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages 被引量:8
2
作者 Zhi-Gang Li Melanie J. Scott +6 位作者 Tomasz Brzóska Prithu Sundd Yue-Hua Li timothy r. billiar Mark A. Wilson Ping Wang Jie Fan 《Military Medical Research》 CAS 2018年第4期324-334,共11页
Background: Acute lung injury(ALI) is a major component of multiple organ dysfunction syndrome(MODS) following pulmonary and systemic infection. Alveolar macrophages(AMφ) are at the center of ALI pathogenesis. Emergi... Background: Acute lung injury(ALI) is a major component of multiple organ dysfunction syndrome(MODS) following pulmonary and systemic infection. Alveolar macrophages(AMφ) are at the center of ALI pathogenesis. Emerging evidence has shown that cell-cell interactions in the lungs play an important regulatory role in the development of acute lung inflammation. However, the underneath mechanisms remain poorly addressed. In this study, we explore a novel function of lung epithelial cells(LEPCs) in regulating the release of exosomes from AMφ following LPS stimulation.Methods: For the in vivo experiments, C57 BL/6 wildtype(WT) mice were treated with lipopolysaccharide(LPS)(2 mg/kg) in 0.2 ml of saline via intratracheal aerosol administration. Bronchoalveolar lavage fluid was collected at 0–24 h after LPS treatment, and exosomes derived from AMφ were measured. For the in vitro studies, LEPCs and bone marrowderived Mφ(BMDM) were isolated from WT or TLR4-/-mice and were then cocultured in the Transwell? system. After coculture for 0–24 h, the BMDM and supernatant were harvested for the measurement of exosomes and cytokines.Results: We demonstrate that LPS induces macrophages(Mφ) to release exosomes, which are then internalized by neighboring Mφ to promote TNF-α expression. The secreted interleukin(IL)-25 from LEPCs downregulates Rab27 a and Rab27 b expression in Mφ, resulting in suppressed exosome release and thereby attenuating exosome-induced TNF-α expression and secretion.Conclusion: These findings reveal a previously unidentified crosstalk pathway between LEPCs and Mφ that negatively regulates the inflammatory responses of Mφ to LPS. Modulating IL-25 signaling and targeting exosome release may present a new therapeutic strategy for the treatment of ALI. 展开更多
关键词 Acute LUNG injury SEPSIS Multiple ORGAN failure Rab27
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部