BACKGROUND Superior mesenteric artery syndrome(SMAS)is a rare condition causing functional obstruction of the third portion of the duodenum.Postoperative SMAS following laparoscopic-assisted radical right hemicolectom...BACKGROUND Superior mesenteric artery syndrome(SMAS)is a rare condition causing functional obstruction of the third portion of the duodenum.Postoperative SMAS following laparoscopic-assisted radical right hemicolectomy is even less prevalent and can often be unrecognized by radiologists and clinicians.AIM To analyze the clinical features,risk factors,and prevention of SMAS after laparoscopic-assisted radical right hemicolectomy.METHODS We retrospectively analyzed clinical data of 256 patients undergoing laparoscopicassisted radical right hemicolectomy in the Affiliated Hospital of Southwest Medical University from January 2019 to May 2022.The occurrence of SMAS and its countermeasures were evaluated.Among the 256 patients,SMAS was confirmed in six patients(2.3%)by postoperative clinical presentation and imaging features.All six patients were examined by enhanced computed tomography(CT)before and after surgery.Patients who developed SMAS after surgery were used as the experimental group.A simple random sampling method was used to select 20 patients who underwent surgery at the same time but did not develop SMAS and received preoperative abdominal enhanced CT as the control group.The angle and distance between the superior mesenteric artery and abdominal aorta were measured before and after surgery in the experimental group and before surgery in the control group.The preoperative body mass index(BMI)of the experimental group and the control group was calculated.The type of lymphadenectomy and surgical approach in the experimental and control groups were recorded.The differences in angle and distance were compared preoperatively and postoperatively in the experimental group compared.The differences in angle,distance,BMI,type of lymphadenectomy and surgical approach between the experimental and control groups were compared,and the diagnostic efficacy of the significant parameters was assessed using receiver operating characteristic curves.RESULTS In the experimental group,the aortomesenteric angle and distance after surgery were significantly decreased than those before surgery(P<0.05).The aortomesenteric angle,distance and BMI were significantly higher in the control group than in the experimental(P<0.05).There was no significant difference in the type of lymphadenectomy and surgical approach between the two groups(P>0.05).CONCLUSION The small preoperative aortomesenteric angle and distance and low BMI may be important factors for the complication.Over-cleaning of lymph fatty tissues may also be associated with this complication.展开更多
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear...Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.展开更多
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices,food packaging,biomedical application,and so forth,owing to their various advantages such as good flexibility,tunable li...Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices,food packaging,biomedical application,and so forth,owing to their various advantages such as good flexibility,tunable light transmittance,high thermal stability,low thermal expansion coefficient,and superior mechanical properties.Herein,recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies.We begin with a brief introduction of the three types of nanocellulose:cellulose nanocrystals,cellulose nanofibrils and bacterial cellulose,recapitulating their differences in preparation and properties.Then,the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared.Furthermore,the advanced applications of cellulose nanopaper including energy storage,electronic devices,water treatment,and high-performance packaging materials were highlighted.Finally,the prospects and ongoing challenges of cellulose nanopaper were summarized.展开更多
Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was fou...Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low.Delivery systems made of food-grade materials have been reported to improve the shelf-life,bioavailability and bioefficacy of TPPs.This review discusses the chemistry of TPPs;the setbacks of TPPs for application;and the strategies to counteract application limitations by rationally designing delivery systems.An overview of different formulations used to encapsulate TPPs is provided in this study,such as emulsion-based systems(liposome,nanoemulsion,double emulsion,and Pickering emulsion)and nano/microparticles-based systems(protein-based,carbohydrate-based,and bi-polymer based).In addition,the stability,bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models.The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs,which can be of great value to TPPs-fortified food products.Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.展开更多
The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive...The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive effect of SMNT on wheat tillering are not fully elucidated.A split-plot experiment was designed to investigate the combined effects of SMNT and cultivars on tillering of dryland wheat grown under both dry and favorable climates.Application of SMNT to a cultivar with 1-2 tillers exploited both tillering and kernel-number plasticity,increasing the mean grain yield by 20.5%.This increase was attrib-uted primarily to an increased first-tiller emergence rate resulting from increased N uptake,leaf N con-tent,and N remobilization from tillers to their grain.The second and third tillers,as transient sinks,contributed to the tiller survival rate,which depends on tiller leaf number.The increased total N uptake by SMNT also increased the dry mass yield of tillers and the C:N ratio,reducing the asymmetric compe-tition between main stem and tillers.Owing to these beneficial effects,reduced mitogen-activated pro-tein kinase(MAPK)and abscisic acid signals were observed under SMNT,whereas indole-3-acetic acid(IAA)signals and genes involved in DNA replication and mismatch repair were increased.These signals activated three critical transcription factors(the calmodulin-binding transcription activator,GRAS domain,and cysteine-2/histidine-2 family)and further increased rapid drought response and tiller main-tenance after stem extension.Phenylpropanoid biosynthesis,sphingolipid biosynthesis,and galactose metabolism were most relevant to increased tillering under SMNT because of their critical role in drought response and lignin biosynthesis.Our results suggest that straw mulch-based no-tillage activates rapid drought response and improved wheat tillering by coordinating root N uptake,N remobilization,and asymmetric competition between main stem and tillers.展开更多
The yearly growing quantities of dataflow create a desired requirement for advanced data storage methods.Luminescent materials,which possess adjustable parameters such as intensity,emission center,lifetime,polarizatio...The yearly growing quantities of dataflow create a desired requirement for advanced data storage methods.Luminescent materials,which possess adjustable parameters such as intensity,emission center,lifetime,polarization,etc.,can be used to enable multi-dimensional optical data storage(ODS)with higher capacity,longer lifetime and lower energy consumption.Multiplexed storage based on luminescent materials can be easily manipulated by lasers,and has been considered as a feasible option to break through the limits of ODS density.Substantial progresses in laser-modified luminescence based ODS have been made during the past decade.In this review,we recapitulated recent advancements in laser-modified luminescence based ODS,focusing on the defect-related regulation,nucleation,dissociation,photoreduction,ablation,etc.We conclude by discussing the current challenges in laser-modified luminescence based ODS and proposing the perspectives for future development.展开更多
Qi-Yu-San-Long decoction(QYSLD)is a traditional Chinese medicine that has been clinically used in the treatment of non-small-cell lung cancer(NSCLC)for more than 20 years.However,to date,metabolicrelated studies on QY...Qi-Yu-San-Long decoction(QYSLD)is a traditional Chinese medicine that has been clinically used in the treatment of non-small-cell lung cancer(NSCLC)for more than 20 years.However,to date,metabolicrelated studies on QYSLD have not been performed.In this study,a post-targeted screening strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry(UPLC-QTOF-MS^(E))was developed to identify QYSLD-related xenobiotics in rat urine.The chemical compound database of QYSLD constituents was established from previous research,and metabolites related to these compounds were predicted in combination with their possible metabolic pathways.The metabolites were identified by extracted ion chromatograms using predicted m/z values as well as retention time,excimer ions,and fragmentation behavior.Overall,85 QYSLD-related xenobiotics(20 prototype compounds and 65 metabolites)were characterized from rat urine.The main metabolic reactions and elimination features of QYSLD included oxidation,reduction,decarboxylation,hydrolysis,demethylation,glucuronidation,sulfation,methylation,deglycosylation,acetylation,and associated combination reactions.Of the identified molecules,14 prototype compounds and 58 metabolites were slowly eliminated,thus accumulating in vivo over an extended period,while five prototypes and two metabolites were present in vivo for a short duration.Furthermore,one prototype and five metabolites underwent the process of“appearing-disappearing-reappearing”in vivo.Overall,the metabolic profile and characteristics of QYSLD in rat urine were determined,which is useful in elucidating the active components of the decoction in vivo,thus providing the basis for studying its mechanism of action.展开更多
5-Demethylnobile tin(5-DMN),a hydroxylated polymethoxyflavone(OH-PMF)identified in aged citrus peels,has demonstrated health benefiting effects in previous studies.5-DMN undergoes biotransformation in vivo,yielding 5,...5-Demethylnobile tin(5-DMN),a hydroxylated polymethoxyflavone(OH-PMF)identified in aged citrus peels,has demonstrated health benefiting effects in previous studies.5-DMN undergoes biotransformation in vivo,yielding 5,3’-didemethylnobiletin(5,3’-DDMN),5,4’-didemethylnobiletin(5,4’-DDMN)and5,3’,4’-tridemethylnobiletin(5,3’,4’-TDMN).However,the anti-cancer effects of 5-DMN and its in vivo metabolites against HepG2 cells remain unclear.In this study,an efficient chemical synthetic method was developed to obtain 5-DMN and its 3 metabolites,and their molecular structures were confirmed by;H NMR and LC-MS.Cytotoxicity,cell cycle arrestment,apoptosis and caspase-3 expression were investigated to evaluate the anti-liver cancer effects of these OH-PMFs on HepG2 cells.The results showed that all 4 compounds inhibited the proliferation of HepG2 cells in a concentration-dependent manner.Their anti-proliferative activity was exerted through inducing G2/M phase arrestment,cell apoptosis and promoting expression of a key apoptotic protein called cleaved caspase-3.Our results indicated that 5,3’-DDMN and5,3’,4’-TDMN showed a stronger inhibitory activity on cell proliferation than 5-DMN,followed by 5,4’-DDMN.The expression of cleaved caspase-3 was the highest in cells treated with 5,4’-DDMN,implying that the apoptosis induced by other OH-PMFs might be mediated by other apoptotic execution proteins.Our research reveals the application potential and scientific evidence for the production and functionality of OH-PMFs.展开更多
高频超声换能器已成为现代医学诊断和治疗的有力工具.目前,大多数超声换能器使用压电陶瓷进行机电耦合,在高频(>20 MHz)下会发生周期性的电声转换,因此对材料可靠性要求较高.本文提出了一种结构调控策略,以提高铌酸钾钠(KNN)基无铅...高频超声换能器已成为现代医学诊断和治疗的有力工具.目前,大多数超声换能器使用压电陶瓷进行机电耦合,在高频(>20 MHz)下会发生周期性的电声转换,因此对材料可靠性要求较高.本文提出了一种结构调控策略,以提高铌酸钾钠(KNN)基无铅陶瓷的压电性与可靠性,并用于高频超声成像.该KNN基陶瓷具有增强的压电性(d33~550±20 pC N^(-1))及抗疲劳特性,同时针对其良好性能,我们从涉及宏观到微观的多项共存、完好微观结构与灵活畴翻转的多维度协同效应阐述其机理.该多维度协同效应抑制了疲劳过程中性能恶化裂纹的出现及空间电荷的聚集,从而减少了畴壁的钉扎,增强了抗疲劳性.此外,基于该高性能压电陶瓷制备的超声换能器具有高可靠性及温度稳定性(从室温到80℃,频带宽度几乎不变).我们利用该超声换能器扫描罗非鱼眼球结构测试了器件成像效果.相信通过结构策略实现性能提升的新方法可以促进KNN基超声器件在生物医学方面的应用.展开更多
The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains...The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains a challenge to simultaneously obtain good piezoelectricity and reliable temperature stability in lead zirconate titanate(PZT)-based piezoelectric ceramics.To solve this issue,a synergetic strategy was proposed to introduce lead vacancies through niobium doping and construct morphotropic phase boundary(MPB).In this work,Pb_(0.905)Ba_(0.085)(V Pb″)_(0.01)[(Zr_(x)Ti_(1-x))_(0.98)Nb_(0.02)]O_(3)(PBZTN-x)material system was designed.Good comprehensive properties(d_(33)=864 pC/N,k_(p)=84%,T_(C)=201℃)and excellent temperature stability(less than 10%variation of electrical properties from 20℃ to 160℃)were obtained in PBZTN-0.540 ceramics.Good piezoelectricity can be attributed to high extrinsic contribution(domain wall motion)induced by Pb^(2+)vacancies and the existence of nano-domains emerged at MPB,while excellent temperature stability is mainly attributed to the minimized local stress in the lattice and the stable domain structure.展开更多
Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent...Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent materials develop extremely slowly due to the lack of effective guidelines for rational design.Herein,three antimony(Ⅲ)fluoride oxalates,namely,Na_(2)Sb_(2)(C_(2)O_(4))F_(6),K_(2)Sb_(2)(C_(2)O_(4))F_(6),and Cs_(2)Sb_(2)-(C_(2)O_(4))_(2)F_(4)·H_(2)O,were successfully synthesized through a rational combination ofπ-conjugated C_(2)O_(4)^(2-)anions and Sb^(3+)cations with stereochemically active lone pairs.These oxalates feature unique quasi-one-dimensional chain structures that induce large optical anisotropy.Remarkably,Cs_(2)Sb_(2)(C_(2)O_(4))_(2)-F_(4)·H_(2)O exhibits the largest birefringence(0.325@546 nm)among all reported antimony(Ⅲ)-based oxysalts.Detailed structural analysis and theoretical calculations confirmed that the optical anisotropy of these oxalates could be tuned through the synergetic interactions of templated cations and anionic functional groups.This work may open the door to efficiently designing excellent birefringent materials and guide the further discovery of other novel structure-driven functional materials.展开更多
CONSPECTUS:The increasing world energy crisis drives humans to harvest the energy in nature as much as possible without heavily damaging the environment.However,most of the energy in nature cannot be used directly.The...CONSPECTUS:The increasing world energy crisis drives humans to harvest the energy in nature as much as possible without heavily damaging the environment.However,most of the energy in nature cannot be used directly.Therefore,pursuing technologies or matter that can directly interconvert different energies has been one of the most cutting-edge fields in science and technology.Such a magic ability exists in true-life piezoelectric materials that generate charge when being given a force and vice versa,rendering them highly promising for energy harvesting and conversion because of the tremendous mechanical energy on the earth,such as tide energy.Thus,piezoelectric materials,represented by the lead zirconate titanate(Pb(Zr,Ti)O_(3),PZT)family,have been largely used in various traditional and burgeoning fields,such as electronic information,biomedical treatment,and wearable flexible electronic devices,and are one of the most important favorites in multidisciplinary fields.However,Pb is highly toxic.Driven by environmental protection and concern for human health,Pb-free piezoceramics are rapidly being developed to hopefully replace Pb-based ones.In particular,the renewal of Restriction of the use of certain Hazardous Substances(e.g.,RoHS 2),issued by the European Union,declared that replacement of PZT“...may be scientif ically and technologically practical to a certain degree...”.Therefore,developing high-performance Pb-free piezoceramics has become more urgent than ever.In this context,some Pb-free piezoceramics,represented by potassium sodium niobate((K,Na)NbO_(3),KNN),barium titanate(BaTiO_(3),BT),bismuth barium titanate((Bi,Na)TiO_(3),BNT),and bismuth ferrite(BiFeO_(3),BFO),stand out because of their unique or similar traits.However,several key challenges,including an inferior overall performance compared to Pb-based counterparts and an unclear structure−property relationship from multiscale viewpoints,have severely hindered the development of Pb-free piezoceramics for a long time.Pb-based piezoceramics possess decent performance due to the strategy of phase boundary engineering,which inspired the researchers to pursue it in Pb-free counterparts.In the last 10 years,our group has been aiming at the new phase boundary(NPB)and new physical phenomenon in Pb-free piezoceramics.This Account presents our recent contributions to the development of Pbfree piezoceramics concerning the good performance and emerging phenomenon.First,we introduce the construction of the NPB in KNN-based piezoceramics by emphasizing the role of some key elements(i.e.,Bi,Sb,Zr,and Hf).Then,we summarize the effects of the NPB on KNN-and BT-based ceramics and the new physical phenomenon in BNT-based ceramics.The NPB boosts the piezoelectric properties and temperature stability of KNN-and BT-based piezoceramics,comparable to some Pb-based piezoceramics.Combining the NPB and the multilayer ceramics substantially enhances the temperature stability of the piezoelectric constant.A new physical phenomenon of the nanoscale bubble domains with polar topologies is for the first time revealed in BNTbased ceramics,showing potential applications for nonconventional and high-density nonvolatile memories.In particular,we emphasize structure engineering from multiscale viewpoints including the local,microscopic,mesoscopic,and macroscopic structure(e.g.,lattice structure,ferroelectric domains,and phase structure).Finally,we provide perspectives on the future developments of Pb-free piezoceramics toward practical applications.展开更多
Potassium–sodium niobate(K,Na)NbO3/(KNN)lead-free ceramics have drawn vast amount of attention as one of the effective alternatives to lead-based ones.In recent years,the author’s group concentrated their work on KN...Potassium–sodium niobate(K,Na)NbO3/(KNN)lead-free ceramics have drawn vast amount of attention as one of the effective alternatives to lead-based ones.In recent years,the author’s group concentrated their work on KNN-based ceramics.This paper reviews the main obtained results in authors’laboratory on how to enhance the piezoelectric properties of KNN-based ceramics,including the ions or compounds substitution,the constructing and types of phase boundaries near room temperature,the investigation of other tools(sintering aids,synthesis technique,poling conditions)on properties.All the published papers up to now show the developing higher performance with maintaining high Curie temperature of KNN-based ceramics which has great potential for the future and is the key to success for the field.展开更多
In order to explore the effect of piston cup structure on its sealing characteristics and mechanical properties,a numerical simulation model of the piston cup in the BW-160 mud pump was established.Effects of work loa...In order to explore the effect of piston cup structure on its sealing characteristics and mechanical properties,a numerical simulation model of the piston cup in the BW-160 mud pump was established.Effects of work load,friction coefficient and cup structure parameters on the sealing and mechanical properties of the piston were discussed under mud discharge condition.The results show that stress concentration on the root and lips of the cup is becoming more and more obvious with the working load increases.The average contact pressure increases with the friction coefficient increases,but an excessive friction coefficient accelerate the wear of the cup and the heat generation.Effect of the piston lip interference and thickness on the sealing performance of the cup is greater than that of the inner wall width.The piston with groove structure can effectively improve the sealing performance of the piston.The mechanical properties of triangular groove cup are better than that of semicircular and trapezoidal groove cup.展开更多
Background:Three-dimensional(3D)printed tissue engineered bone was used to repair the bone tissue defects in the oral and maxillofacial(OMF)region of experimental dogs.Material and methods:Canine bone marrow stromal c...Background:Three-dimensional(3D)printed tissue engineered bone was used to repair the bone tissue defects in the oral and maxillofacial(OMF)region of experimental dogs.Material and methods:Canine bone marrow stromal cells(BMSCs)were obtained from 9 male Beagle dogs and in vitro cultured for osteogenic differentiation.The OMF region was scanned for 3D printed surgical guide plate and mold by ProJet1200 high-precision printer using implant materials followed sintering at 1250℃.The tissue engineered bones was co-cultured with BASCs for 2 or 8 d.The cell scaffold composite was placed in the defects and fixed in 9 dogs in 3 groups.Postoperative CT and/or micro-CT scans were performed to observe the osteogenesis and material degradation.Results:BMSCs were cultured with osteogenic differentiation in the second generation(P2).The nanoporous hydroxyapatite implant was made using the 3D printing mold with the white porous structure and the hard texture.BMSCs with osteogenic induction were densely covered with the surface of the material after co-culture and ECM was secreted to form calcium-like crystal nodules.The effect of the tissue engineered bone on the in vivo osteogenesis ability was no significant difference between 2 d and 8 d of the compositing time.Conclusions:The tissue-engineered bone was constructed by 3D printing mold and hightemperature sintering to produce nanoporous hydroxyapatite scaffolds,which repair in situ bone defects in experimental dogs.The time of compositing for tissue engineered bone was reduced from 8 d to 2 d without the in vivo effect.展开更多
Porous geopolymer precursors were firstly prepared by the direct foaming method using bauxite,fly ash(FA),and metakaolin(MK)as raw materials,and porous mullite ceramics were prepared after ammonium ion exchange and th...Porous geopolymer precursors were firstly prepared by the direct foaming method using bauxite,fly ash(FA),and metakaolin(MK)as raw materials,and porous mullite ceramics were prepared after ammonium ion exchange and then high-temperature sintering.The effects of chemical foaming agent concentration,ion-exchange time,and sintering temperature on porous geopolymerderived mullite ceramics were studied,and the optimal preparation parameters were found.Studies have shown that the concentration of blowing agent had great influence on open porosity(q)and porosity and cell size distributions of geopolymer samples,which in turn affected their compressive strength(σ).Duration of the ion exchange had no obvious effect on the sintered samples,and the amount of mullite phase increased with the increase in the sintering temperature.Mullite foams,possessing an open-celled porous structure,closely resembling that of the starting porous geopolymers produced by directly foaming,were obtained by firing at high temperatures.Stable mullite(3Al_(2)O_(3)·2SiO_(2))ceramic foams with total porosity(ε)of 83.52 vol%,high open porosity of 83.23 vol%,and compressive strength of 1.72 MPa were produced after sintering at 1400 for 2 h in℃ air without adding any sintering additives using commercial MK,bauxite,and FA as raw materials.展开更多
文摘BACKGROUND Superior mesenteric artery syndrome(SMAS)is a rare condition causing functional obstruction of the third portion of the duodenum.Postoperative SMAS following laparoscopic-assisted radical right hemicolectomy is even less prevalent and can often be unrecognized by radiologists and clinicians.AIM To analyze the clinical features,risk factors,and prevention of SMAS after laparoscopic-assisted radical right hemicolectomy.METHODS We retrospectively analyzed clinical data of 256 patients undergoing laparoscopicassisted radical right hemicolectomy in the Affiliated Hospital of Southwest Medical University from January 2019 to May 2022.The occurrence of SMAS and its countermeasures were evaluated.Among the 256 patients,SMAS was confirmed in six patients(2.3%)by postoperative clinical presentation and imaging features.All six patients were examined by enhanced computed tomography(CT)before and after surgery.Patients who developed SMAS after surgery were used as the experimental group.A simple random sampling method was used to select 20 patients who underwent surgery at the same time but did not develop SMAS and received preoperative abdominal enhanced CT as the control group.The angle and distance between the superior mesenteric artery and abdominal aorta were measured before and after surgery in the experimental group and before surgery in the control group.The preoperative body mass index(BMI)of the experimental group and the control group was calculated.The type of lymphadenectomy and surgical approach in the experimental and control groups were recorded.The differences in angle and distance were compared preoperatively and postoperatively in the experimental group compared.The differences in angle,distance,BMI,type of lymphadenectomy and surgical approach between the experimental and control groups were compared,and the diagnostic efficacy of the significant parameters was assessed using receiver operating characteristic curves.RESULTS In the experimental group,the aortomesenteric angle and distance after surgery were significantly decreased than those before surgery(P<0.05).The aortomesenteric angle,distance and BMI were significantly higher in the control group than in the experimental(P<0.05).There was no significant difference in the type of lymphadenectomy and surgical approach between the two groups(P>0.05).CONCLUSION The small preoperative aortomesenteric angle and distance and low BMI may be important factors for the complication.Over-cleaning of lymph fatty tissues may also be associated with this complication.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51775077 and 51909023)。
文摘Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.
基金This work has been supported by the National Natural Science Foundation of China(32071720)and Key Technology Research and Development Program of Tianjin(19YFZCSN00950)+2 种基金from Tianjin Municipal Science and Technology Bureau,T.Xu thanks the China Postdoctoral Science Foundation(2021M702456)K.Liu acknowledges the financial support from the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB198).W.Liu thanks the China Scholarship Council for the financial support(No.202108120056)and Innovation Project of Excellent Doctoral Dissertation of Tianjin University of Science and Technology(2020005)Open access funding provided by Shanghai Jiao Tong University
文摘Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices,food packaging,biomedical application,and so forth,owing to their various advantages such as good flexibility,tunable light transmittance,high thermal stability,low thermal expansion coefficient,and superior mechanical properties.Herein,recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies.We begin with a brief introduction of the three types of nanocellulose:cellulose nanocrystals,cellulose nanofibrils and bacterial cellulose,recapitulating their differences in preparation and properties.Then,the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared.Furthermore,the advanced applications of cellulose nanopaper including energy storage,electronic devices,water treatment,and high-performance packaging materials were highlighted.Finally,the prospects and ongoing challenges of cellulose nanopaper were summarized.
文摘Tea polyphenols(TPPs)have attracted significant research interest due to their health benefits.However,TPPs are sensitive to certain environmental and gastrointestinal conditions and their oral bioavailability was found to be very low.Delivery systems made of food-grade materials have been reported to improve the shelf-life,bioavailability and bioefficacy of TPPs.This review discusses the chemistry of TPPs;the setbacks of TPPs for application;and the strategies to counteract application limitations by rationally designing delivery systems.An overview of different formulations used to encapsulate TPPs is provided in this study,such as emulsion-based systems(liposome,nanoemulsion,double emulsion,and Pickering emulsion)and nano/microparticles-based systems(protein-based,carbohydrate-based,and bi-polymer based).In addition,the stability,bioavailability and bioactivities of encapsulated TPPs are evaluated by various in vitro and in vivo models.The current findings provide scientific insights in encapsulation approaches for the delivery of TPPs,which can be of great value to TPPs-fortified food products.Further explorations are needed for the encapsulated TPPs in terms of their applications in the real food industry as well as their biological fate and functional pathways in vivo.
基金financial support from the Sichuan Province Science and Technology Support Program (2021YJ0504,2021YFYZ0002)National Key Research and Development Program of China (2016YFD0300406)+1 种基金Special Fund for Agro-scientific Research in the Public Interest (20150312705)the Crops Breeding Project in Sichuan Province (2016NYZ0051,22ZDZX0018)
文摘The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive effect of SMNT on wheat tillering are not fully elucidated.A split-plot experiment was designed to investigate the combined effects of SMNT and cultivars on tillering of dryland wheat grown under both dry and favorable climates.Application of SMNT to a cultivar with 1-2 tillers exploited both tillering and kernel-number plasticity,increasing the mean grain yield by 20.5%.This increase was attrib-uted primarily to an increased first-tiller emergence rate resulting from increased N uptake,leaf N con-tent,and N remobilization from tillers to their grain.The second and third tillers,as transient sinks,contributed to the tiller survival rate,which depends on tiller leaf number.The increased total N uptake by SMNT also increased the dry mass yield of tillers and the C:N ratio,reducing the asymmetric compe-tition between main stem and tillers.Owing to these beneficial effects,reduced mitogen-activated pro-tein kinase(MAPK)and abscisic acid signals were observed under SMNT,whereas indole-3-acetic acid(IAA)signals and genes involved in DNA replication and mismatch repair were increased.These signals activated three critical transcription factors(the calmodulin-binding transcription activator,GRAS domain,and cysteine-2/histidine-2 family)and further increased rapid drought response and tiller main-tenance after stem extension.Phenylpropanoid biosynthesis,sphingolipid biosynthesis,and galactose metabolism were most relevant to increased tillering under SMNT because of their critical role in drought response and lignin biosynthesis.Our results suggest that straw mulch-based no-tillage activates rapid drought response and improved wheat tillering by coordinating root N uptake,N remobilization,and asymmetric competition between main stem and tillers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774034 and 12104090)。
文摘The yearly growing quantities of dataflow create a desired requirement for advanced data storage methods.Luminescent materials,which possess adjustable parameters such as intensity,emission center,lifetime,polarization,etc.,can be used to enable multi-dimensional optical data storage(ODS)with higher capacity,longer lifetime and lower energy consumption.Multiplexed storage based on luminescent materials can be easily manipulated by lasers,and has been considered as a feasible option to break through the limits of ODS density.Substantial progresses in laser-modified luminescence based ODS have been made during the past decade.In this review,we recapitulated recent advancements in laser-modified luminescence based ODS,focusing on the defect-related regulation,nucleation,dissociation,photoreduction,ablation,etc.We conclude by discussing the current challenges in laser-modified luminescence based ODS and proposing the perspectives for future development.
基金supported by grants from the National Natural Science Foundation of China(Grant No.:81903765)the Open Fund Project of Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Major Pulmonary Diseases of the Anhui Provincial Department of Education(Grant No.:JYTKF2020-5)the Graduate Science and Technology Innovation Fund project of Anhui University of Chinese Medicine(Grant No.:2020YB06).
文摘Qi-Yu-San-Long decoction(QYSLD)is a traditional Chinese medicine that has been clinically used in the treatment of non-small-cell lung cancer(NSCLC)for more than 20 years.However,to date,metabolicrelated studies on QYSLD have not been performed.In this study,a post-targeted screening strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry(UPLC-QTOF-MS^(E))was developed to identify QYSLD-related xenobiotics in rat urine.The chemical compound database of QYSLD constituents was established from previous research,and metabolites related to these compounds were predicted in combination with their possible metabolic pathways.The metabolites were identified by extracted ion chromatograms using predicted m/z values as well as retention time,excimer ions,and fragmentation behavior.Overall,85 QYSLD-related xenobiotics(20 prototype compounds and 65 metabolites)were characterized from rat urine.The main metabolic reactions and elimination features of QYSLD included oxidation,reduction,decarboxylation,hydrolysis,demethylation,glucuronidation,sulfation,methylation,deglycosylation,acetylation,and associated combination reactions.Of the identified molecules,14 prototype compounds and 58 metabolites were slowly eliminated,thus accumulating in vivo over an extended period,while five prototypes and two metabolites were present in vivo for a short duration.Furthermore,one prototype and five metabolites underwent the process of“appearing-disappearing-reappearing”in vivo.Overall,the metabolic profile and characteristics of QYSLD in rat urine were determined,which is useful in elucidating the active components of the decoction in vivo,thus providing the basis for studying its mechanism of action.
文摘5-Demethylnobile tin(5-DMN),a hydroxylated polymethoxyflavone(OH-PMF)identified in aged citrus peels,has demonstrated health benefiting effects in previous studies.5-DMN undergoes biotransformation in vivo,yielding 5,3’-didemethylnobiletin(5,3’-DDMN),5,4’-didemethylnobiletin(5,4’-DDMN)and5,3’,4’-tridemethylnobiletin(5,3’,4’-TDMN).However,the anti-cancer effects of 5-DMN and its in vivo metabolites against HepG2 cells remain unclear.In this study,an efficient chemical synthetic method was developed to obtain 5-DMN and its 3 metabolites,and their molecular structures were confirmed by;H NMR and LC-MS.Cytotoxicity,cell cycle arrestment,apoptosis and caspase-3 expression were investigated to evaluate the anti-liver cancer effects of these OH-PMFs on HepG2 cells.The results showed that all 4 compounds inhibited the proliferation of HepG2 cells in a concentration-dependent manner.Their anti-proliferative activity was exerted through inducing G2/M phase arrestment,cell apoptosis and promoting expression of a key apoptotic protein called cleaved caspase-3.Our results indicated that 5,3’-DDMN and5,3’,4’-TDMN showed a stronger inhibitory activity on cell proliferation than 5-DMN,followed by 5,4’-DDMN.The expression of cleaved caspase-3 was the highest in cells treated with 5,4’-DDMN,implying that the apoptosis induced by other OH-PMFs might be mediated by other apoptotic execution proteins.Our research reveals the application potential and scientific evidence for the production and functionality of OH-PMFs.
基金supported by the National Natural Science Foundation of China(NSFC 52202144,52061130216 and 52032007)the Key-Area Research and Development Program of Guangdong Province(2020B0109380001)+2 种基金the Central Funds Guiding the Local Science and Technology Development of Sichuan Province(2021ZYD0022)the Fundamental Research Funds for the Central Universities,Sichuan University(YJ2021153)the Newton Advanced Fellowship award(NAFR1201126)from the Royal Society。
文摘高频超声换能器已成为现代医学诊断和治疗的有力工具.目前,大多数超声换能器使用压电陶瓷进行机电耦合,在高频(>20 MHz)下会发生周期性的电声转换,因此对材料可靠性要求较高.本文提出了一种结构调控策略,以提高铌酸钾钠(KNN)基无铅陶瓷的压电性与可靠性,并用于高频超声成像.该KNN基陶瓷具有增强的压电性(d33~550±20 pC N^(-1))及抗疲劳特性,同时针对其良好性能,我们从涉及宏观到微观的多项共存、完好微观结构与灵活畴翻转的多维度协同效应阐述其机理.该多维度协同效应抑制了疲劳过程中性能恶化裂纹的出现及空间电荷的聚集,从而减少了畴壁的钉扎,增强了抗疲劳性.此外,基于该高性能压电陶瓷制备的超声换能器具有高可靠性及温度稳定性(从室温到80℃,频带宽度几乎不变).我们利用该超声换能器扫描罗非鱼眼球结构测试了器件成像效果.相信通过结构策略实现性能提升的新方法可以促进KNN基超声器件在生物医学方面的应用.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52002252 and 52032007).
文摘The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains a challenge to simultaneously obtain good piezoelectricity and reliable temperature stability in lead zirconate titanate(PZT)-based piezoelectric ceramics.To solve this issue,a synergetic strategy was proposed to introduce lead vacancies through niobium doping and construct morphotropic phase boundary(MPB).In this work,Pb_(0.905)Ba_(0.085)(V Pb″)_(0.01)[(Zr_(x)Ti_(1-x))_(0.98)Nb_(0.02)]O_(3)(PBZTN-x)material system was designed.Good comprehensive properties(d_(33)=864 pC/N,k_(p)=84%,T_(C)=201℃)and excellent temperature stability(less than 10%variation of electrical properties from 20℃ to 160℃)were obtained in PBZTN-0.540 ceramics.Good piezoelectricity can be attributed to high extrinsic contribution(domain wall motion)induced by Pb^(2+)vacancies and the existence of nano-domains emerged at MPB,while excellent temperature stability is mainly attributed to the minimized local stress in the lattice and the stable domain structure.
基金supported by the National Natural Science Foundation of China(22122106,22071158,21971171,and21875146)National Research Foundation of Korea(NRF)funded by the Ministry of Science and International Cooperation of Technology(2019R1A2C3005530)。
文摘Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent materials develop extremely slowly due to the lack of effective guidelines for rational design.Herein,three antimony(Ⅲ)fluoride oxalates,namely,Na_(2)Sb_(2)(C_(2)O_(4))F_(6),K_(2)Sb_(2)(C_(2)O_(4))F_(6),and Cs_(2)Sb_(2)-(C_(2)O_(4))_(2)F_(4)·H_(2)O,were successfully synthesized through a rational combination ofπ-conjugated C_(2)O_(4)^(2-)anions and Sb^(3+)cations with stereochemically active lone pairs.These oxalates feature unique quasi-one-dimensional chain structures that induce large optical anisotropy.Remarkably,Cs_(2)Sb_(2)(C_(2)O_(4))_(2)-F_(4)·H_(2)O exhibits the largest birefringence(0.325@546 nm)among all reported antimony(Ⅲ)-based oxysalts.Detailed structural analysis and theoretical calculations confirmed that the optical anisotropy of these oxalates could be tuned through the synergetic interactions of templated cations and anionic functional groups.This work may open the door to efficiently designing excellent birefringent materials and guide the further discovery of other novel structure-driven functional materials.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52061130216,52032007,52002252,and 51722208)the Central Funds Guiding the Local Science and Technology Development of Sichuan Province(2021ZYD0022)+2 种基金the Fundamental Research Funds for the Central Universities(YJ2021154)Chengdu International Science and Technology Cooperation Project(2021-GH03-00003-HZ)The Royal Society is appreciated for a Newton Advanced Fellowship award(NAF\R1\201126).
文摘CONSPECTUS:The increasing world energy crisis drives humans to harvest the energy in nature as much as possible without heavily damaging the environment.However,most of the energy in nature cannot be used directly.Therefore,pursuing technologies or matter that can directly interconvert different energies has been one of the most cutting-edge fields in science and technology.Such a magic ability exists in true-life piezoelectric materials that generate charge when being given a force and vice versa,rendering them highly promising for energy harvesting and conversion because of the tremendous mechanical energy on the earth,such as tide energy.Thus,piezoelectric materials,represented by the lead zirconate titanate(Pb(Zr,Ti)O_(3),PZT)family,have been largely used in various traditional and burgeoning fields,such as electronic information,biomedical treatment,and wearable flexible electronic devices,and are one of the most important favorites in multidisciplinary fields.However,Pb is highly toxic.Driven by environmental protection and concern for human health,Pb-free piezoceramics are rapidly being developed to hopefully replace Pb-based ones.In particular,the renewal of Restriction of the use of certain Hazardous Substances(e.g.,RoHS 2),issued by the European Union,declared that replacement of PZT“...may be scientif ically and technologically practical to a certain degree...”.Therefore,developing high-performance Pb-free piezoceramics has become more urgent than ever.In this context,some Pb-free piezoceramics,represented by potassium sodium niobate((K,Na)NbO_(3),KNN),barium titanate(BaTiO_(3),BT),bismuth barium titanate((Bi,Na)TiO_(3),BNT),and bismuth ferrite(BiFeO_(3),BFO),stand out because of their unique or similar traits.However,several key challenges,including an inferior overall performance compared to Pb-based counterparts and an unclear structure−property relationship from multiscale viewpoints,have severely hindered the development of Pb-free piezoceramics for a long time.Pb-based piezoceramics possess decent performance due to the strategy of phase boundary engineering,which inspired the researchers to pursue it in Pb-free counterparts.In the last 10 years,our group has been aiming at the new phase boundary(NPB)and new physical phenomenon in Pb-free piezoceramics.This Account presents our recent contributions to the development of Pbfree piezoceramics concerning the good performance and emerging phenomenon.First,we introduce the construction of the NPB in KNN-based piezoceramics by emphasizing the role of some key elements(i.e.,Bi,Sb,Zr,and Hf).Then,we summarize the effects of the NPB on KNN-and BT-based ceramics and the new physical phenomenon in BNT-based ceramics.The NPB boosts the piezoelectric properties and temperature stability of KNN-and BT-based piezoceramics,comparable to some Pb-based piezoceramics.Combining the NPB and the multilayer ceramics substantially enhances the temperature stability of the piezoelectric constant.A new physical phenomenon of the nanoscale bubble domains with polar topologies is for the first time revealed in BNTbased ceramics,showing potential applications for nonconventional and high-density nonvolatile memories.In particular,we emphasize structure engineering from multiscale viewpoints including the local,microscopic,mesoscopic,and macroscopic structure(e.g.,lattice structure,ferroelectric domains,and phase structure).Finally,we provide perspectives on the future developments of Pb-free piezoceramics toward practical applications.
基金This work was supported by the National Natural Science Foundation of China(No.51332003).
文摘Potassium–sodium niobate(K,Na)NbO3/(KNN)lead-free ceramics have drawn vast amount of attention as one of the effective alternatives to lead-based ones.In recent years,the author’s group concentrated their work on KNN-based ceramics.This paper reviews the main obtained results in authors’laboratory on how to enhance the piezoelectric properties of KNN-based ceramics,including the ions or compounds substitution,the constructing and types of phase boundaries near room temperature,the investigation of other tools(sintering aids,synthesis technique,poling conditions)on properties.All the published papers up to now show the developing higher performance with maintaining high Curie temperature of KNN-based ceramics which has great potential for the future and is the key to success for the field.
基金Luzhou City Science and Technology Planning Project(2018-GYF-6)Chengdu International Cooperation Project(2019-GH02-00072-HZ)Open Project of the Key Laboratory of the Ministry of Emergency Management of Fire Emergency Rescue Equipment(2019XFZB15).
文摘In order to explore the effect of piston cup structure on its sealing characteristics and mechanical properties,a numerical simulation model of the piston cup in the BW-160 mud pump was established.Effects of work load,friction coefficient and cup structure parameters on the sealing and mechanical properties of the piston were discussed under mud discharge condition.The results show that stress concentration on the root and lips of the cup is becoming more and more obvious with the working load increases.The average contact pressure increases with the friction coefficient increases,but an excessive friction coefficient accelerate the wear of the cup and the heat generation.Effect of the piston lip interference and thickness on the sealing performance of the cup is greater than that of the inner wall width.The piston with groove structure can effectively improve the sealing performance of the piston.The mechanical properties of triangular groove cup are better than that of semicircular and trapezoidal groove cup.
基金The study was approved by the Animal Experimental Enthical Review From Of Southwest Medical University.Informed consent was obtained。
文摘Background:Three-dimensional(3D)printed tissue engineered bone was used to repair the bone tissue defects in the oral and maxillofacial(OMF)region of experimental dogs.Material and methods:Canine bone marrow stromal cells(BMSCs)were obtained from 9 male Beagle dogs and in vitro cultured for osteogenic differentiation.The OMF region was scanned for 3D printed surgical guide plate and mold by ProJet1200 high-precision printer using implant materials followed sintering at 1250℃.The tissue engineered bones was co-cultured with BASCs for 2 or 8 d.The cell scaffold composite was placed in the defects and fixed in 9 dogs in 3 groups.Postoperative CT and/or micro-CT scans were performed to observe the osteogenesis and material degradation.Results:BMSCs were cultured with osteogenic differentiation in the second generation(P2).The nanoporous hydroxyapatite implant was made using the 3D printing mold with the white porous structure and the hard texture.BMSCs with osteogenic induction were densely covered with the surface of the material after co-culture and ECM was secreted to form calcium-like crystal nodules.The effect of the tissue engineered bone on the in vivo osteogenesis ability was no significant difference between 2 d and 8 d of the compositing time.Conclusions:The tissue-engineered bone was constructed by 3D printing mold and hightemperature sintering to produce nanoporous hydroxyapatite scaffolds,which repair in situ bone defects in experimental dogs.The time of compositing for tissue engineered bone was reduced from 8 d to 2 d without the in vivo effect.
基金supported by the National Natural Science Foundation of China (52002090)the Heilongjiang Postdoctoral Science Foundation Funded Project (LBHZ19051)+2 种基金the Fundamental Research Funds for the Central Universities (XK21000210)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (2019QD0002)the open fund from Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education (XK2100021044).
文摘Porous geopolymer precursors were firstly prepared by the direct foaming method using bauxite,fly ash(FA),and metakaolin(MK)as raw materials,and porous mullite ceramics were prepared after ammonium ion exchange and then high-temperature sintering.The effects of chemical foaming agent concentration,ion-exchange time,and sintering temperature on porous geopolymerderived mullite ceramics were studied,and the optimal preparation parameters were found.Studies have shown that the concentration of blowing agent had great influence on open porosity(q)and porosity and cell size distributions of geopolymer samples,which in turn affected their compressive strength(σ).Duration of the ion exchange had no obvious effect on the sintered samples,and the amount of mullite phase increased with the increase in the sintering temperature.Mullite foams,possessing an open-celled porous structure,closely resembling that of the starting porous geopolymers produced by directly foaming,were obtained by firing at high temperatures.Stable mullite(3Al_(2)O_(3)·2SiO_(2))ceramic foams with total porosity(ε)of 83.52 vol%,high open porosity of 83.23 vol%,and compressive strength of 1.72 MPa were produced after sintering at 1400 for 2 h in℃ air without adding any sintering additives using commercial MK,bauxite,and FA as raw materials.