期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Benzimidazolium Functionalized Polysulfone-based Anion Exchange Membranes with Improved Alkaline Stability 被引量:2
1
作者 Yu Pan ting-yun wang +6 位作者 Xiao-Ming Yan Xiao-Wei Xu Qi-Dong Zhang Bao-Lin Zhao Issam El Hamouti Ce Hao Gao-Hong He 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期129-138,共10页
The stability of anion exchange membranes(AEMs) is an important feature of alkaline exchange membrane fuel cells(AEMFCs), which has been extensively studied. However it remains a real challenge due to the harsh wo... The stability of anion exchange membranes(AEMs) is an important feature of alkaline exchange membrane fuel cells(AEMFCs), which has been extensively studied. However it remains a real challenge due to the harsh working condition. Herein, we developed a novel type of polysulfone-based AEMs with three modified 1,2-dimethylbenzimidazoliums containing different substitutes at C4-and C7-position. The results showed that the introduction of the substitutes could obviously improve the dimensional and alkaline stabilities of the corresponding membranes. The swelling ratios of resultant AEMs were all lower than 10% after water immersion. The membrane with 4,7-dimethoxy-1,2-dimethylbenzimidazolium group exhibited the highest alkaline stability. Only 9.2% loss of hydroxide conductivity was observed after treating the membrane in 1 mol·L^(-1) KOH solution at 80 °C for 336 h. Furthermore, the density functional theory(DFT) study on the three functional group models showed that the substitutes at C4-and C7-position affected the lowest unoccupied molecular orbital(LUMO) energies of the different 1,2-dimethylbenzimidazolium groups. 展开更多
关键词 Anion exchange membrane High alkaline stability Benzimidazolium Polysulfone LUMO energy
原文传递
Recent developments in novel silica-based optical fibers
2
作者 ting-yun wang Fu-fei PANG +3 位作者 Su-juan HUANG Jian-xiang WEN Huan-huan LIU Li-bo YUAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第4期481-489,共9页
We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structu... We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum(FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber's center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber(SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 ℃, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, microstructured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed. 展开更多
关键词 Optical FIBER FIBER OPTIC DEVICE Silica-based SPECIAL FIBER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部