Artemisinin and its derivatives represent the most important and influential class of drugs in the fight against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made great stri...Artemisinin and its derivatives represent the most important and influential class of drugs in the fight against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made great strides in characterizing and understanding this remarkable phytochemical and its unique chemical and pharmacological properties. Today, even as artemisinin continues to serve as the foundation for antimalarial therapy, numerous challenges have surfaced in the continued application and development of this family of drugs. These challenges include the emergence of delayed treatment responses to artemisinins in malaria and efforts to apply artemisinins for non-malarial indications. Here, we provide an overview of the story of artemisinin in terms of its past, present, and future. In particular, we comment on the current understanding of the mechanism of action (MOA) of artemisinins, and emphasize the importance of relating mechanistic studies to therapeutic outcomes, both in malarial and non-malarial contexts.展开更多
基金the projects of the National Natural Science Foundation of China (81641002 and 81473548)Major National Science and Technology Program of China for Innovative Drug (2017ZX09101002-001-001-05 and 36 J. Wang et al./ Engineering 5 (2019) 32–39 2017ZX09101002-001-001-3)the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ10-024 and ZXKT18003).
文摘Artemisinin and its derivatives represent the most important and influential class of drugs in the fight against malaria. Since the discovery of artemisinin in the early 1970s, the global community has made great strides in characterizing and understanding this remarkable phytochemical and its unique chemical and pharmacological properties. Today, even as artemisinin continues to serve as the foundation for antimalarial therapy, numerous challenges have surfaced in the continued application and development of this family of drugs. These challenges include the emergence of delayed treatment responses to artemisinins in malaria and efforts to apply artemisinins for non-malarial indications. Here, we provide an overview of the story of artemisinin in terms of its past, present, and future. In particular, we comment on the current understanding of the mechanism of action (MOA) of artemisinins, and emphasize the importance of relating mechanistic studies to therapeutic outcomes, both in malarial and non-malarial contexts.