Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improv...In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.展开更多
In this study, variation in the frequency of thermal discomfort days over China during the period of 1961-2014,including heat discomfort days(HDDs) and cold discomfort days(CDDs), and the influence of external forcing...In this study, variation in the frequency of thermal discomfort days over China during the period of 1961-2014,including heat discomfort days(HDDs) and cold discomfort days(CDDs), and the influence of external forcings on it are discussed. HDDs are the conditions of overheating and overhumidity(represented by humidity index), and CDDs reflect the dangers from cold temperatures and winds(represented by wind chill index). Observations show significant increases(decreases) in the frequency of HDDs(CDDs) over China from 1961 to 2014, with clear regional distinctions. The historical ALL and greenhouse gas(GHG) simulations can sufficiently reproduce the spatial patterns of the observational trend in the frequency of both HDDs and CDDs over China. Further, the impacts of GHG and anthropogenic forcings on the HDDs(CDDs) are detectable over China, except for central and eastern China, based on the optimal fingerprinting method. GHG forcing is identified as a dominant factor for the observational changes in the frequency of HDDs over southern China;GHG and anthropogenic forcings have dominant effects on the variation in the frequency of CDDs over southwestern China. Although trends in the frequency of HDDs and CDDs in historical aerosol forcing simulations seems to be opposite to observations, an aerosol signal fails to be detected. Natural forcing contributes to the observational variation in the frequency of HDDs over northwestern China. In addition, the future projections of thermal discomfort days indicate that Chinese residents will face more threats of heat discomfort and fewer threats of cold discomfort in the future under global warming.展开更多
This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bott...This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.展开更多
Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator t...Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator transitions in 1T-TaS_(2) via angle-resolved photoemission spectroscopy and in-situ rubidium deposition.At 205 K,the rubidium deposition drives a normal metal–insulator transition via filling electrons into the conduction band.While at 225 K,however,the rubidium deposition drives a bandwidth-controlled Mott transition as characterized by a rapid collapsing of Mott gap and a loss of spectral weight of the lower Hubbard band.Our result,from a doping-controlled perspective,succeeds in distinguishing the metallic,band-insulating,and Mott-insulating phases of 1T-TaS_(2),manifesting a delicate balance among the electronitineracy,interlayer-coupling and Coulomb repulsion.We also establish an effective method to tune the balance between these interactions,which is useful in seeking exotic electronic phases and designing functional phase-changing devices.展开更多
This study documents the first two principal modes of interannual variability of midsummer precipitation over Northeast China (NEC) and their associated atmospheric circulation anomalies. It is shown that the first ...This study documents the first two principal modes of interannual variability of midsummer precipitation over Northeast China (NEC) and their associated atmospheric circulation anomalies. It is shown that the first principal mode exhibits the largest amount of variability in precipitation over the south of NEC (referred to as the south mode), whereas the second principal mode behaves with the greatest precipitation anomaly over the north of NEC (referred to as the north mode). Further findings reveal that, through modulating moisture transportation and upper- and lower-troposphere divergence circulation as well as vertical movement over NEC, the anomalous northwestern Pacific anticyclone and the anticyclone centered over northern NEC exert the dominant influence on the south and north modes, respectively. Additionally, it is quantitatively estimated that water vapor across the southern boundary of NEC dominates the moisture budget for the south mode, while the north mode has a close connection with moisture through NEC's northern and western boundal'ies. Furthermore, the north (south) mode is strongly related to the intensity (meridional shift) of the East Asian westerly jet.展开更多
This paper documents a decadal strengthened co-variability of the Antarctic Oscillation (AAO) and ENSO in austral spring after the mid-1990s. During the period 1979-93, the ENSO (AAO) spatial signatures are restri...This paper documents a decadal strengthened co-variability of the Antarctic Oscillation (AAO) and ENSO in austral spring after the mid-1990s. During the period 1979-93, the ENSO (AAO) spatial signatures are restricted to the tropicsmidlatitudes (Antarctic-midlatitudes) of the Southern Hemisphere (SH), with a weak connection between the two oscillations. Comparatively, after the mid-1990s, the E1 Nifio-related atmospheric anomalies project on a negative AAO pattern with a barotropic structure in the mid-high latitudes of the SH. The expansion of E1 Nifio-related air temperature anomalies have a heightened impact on the meridional thermal structure of the SH, contributing to a weakened circumpolar westerly and strengthened subtropical jet. Meanwhile, the ENSO-related southern three-cell circulations expand poleward and then strongly couple the Antarctic and the tropics. Numerical simulation results suggest that the intensified connection between ENSO and SST in the South Pacific since the mid-1990s is responsible for the strengthened AAO-ENSO relationship.展开更多
In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901...In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation(NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.展开更多
Extreme high temperatures occur frequently over the densely populated Yangtze River basin(YRB)in China during summer,significantly impacting the local economic development and ecological system.However,accurate predic...Extreme high temperatures occur frequently over the densely populated Yangtze River basin(YRB)in China during summer,significantly impacting the local economic development and ecological system.However,accurate prediction of extreme high-temperature days in this region remains a challenge.Unfortunately,the Climate Forecast System Version 2(CFSv2)exhibits poor performance in this regard.Thus,based on the interannual increment approach,we develop a hybrid seasonal prediction model over the YRB(HM_(YRB))to improve the prediction of extreme high-temperature days in summer.The HM_(YRB)relies on the following four predictors:the observed preceding April-May snowmelt in north western Europe;the snow depth in March over the central Siberian Plateau;the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent;and the 200-hPa geopotential height over the Tibetan Plateau.The HM_(YRB)indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days,with a markable correlation coefficient of 0.58 and a percentage of the same sign(PSS)of 76% during 1983-2015 in the one-year-out cross-validation.Additionally,the HM_(YRB) maintains high PSS skill(86%)and robustness in the independent prediction period(2016-2022).Furthermore,the HM_(YRB) shows a good performance for years with high occurrence of extreme high-temperature days,with a hit ratio of 40%.These predictors used in HM_(YRB)are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB,albeit with biases existing in the magnitude.Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.展开更多
A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 1...A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 10.3, 11.7 and 6.7 μg/m^3 during the haze episodes, which exceeded the average(9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient(b sp), aerosol absorption coefficient(b ap) and single scattering albedo(SSA) were 288.7, 27.7 and0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+achieved a small peak at noontime. NO3-showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for b sp and b ap as well as SSA. b sp and b ap showed a positive correlation with PM2.5mass concentration.(NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.展开更多
This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)c...This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)circulation(24.3%;224 day).The SWW type had the highest O_(3) anomaly of+17.28μg/m^(3),which was caused by excellent photochemical reactions,poor diffusion ability and regional transport.Due to the higher humidity and precipitation in the low-pressure type(C),the O_(3) increase(+8.02μg/m^(3))was less than that in the SWW type.Good diffusion/wet deposition and weak formation ability contributed to O_(3) decrease in AN(-12.54μg/m^(3))and northerly high-pressure(ESN)CTs(-12.26μg/m^(3)).The intra-area transport of O_(3) was significant in polluted circulations(SWW-and C-CTs).In addition,higher temperature,radiation and less rainfall also contributed to higher O_(3) in northern Beijing under the SWW type.For the clean CTs(AN and ESN CTs),precursor amount and intra-area transport played a dominant role in O_(3) distribution.Under the northeasterly low-pressure CT,better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O_(3) values in the south than in the north.The higher O_(3) in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O_(3) concentration in previous day.Annual variation in the CTs contributed up to 86.1%of the annual variation in O_(3).About 78%-83%of the diurnal variation in O_(3) resulted from local meteorological factors.展开更多
The analytical performance of H+-selective solid-contact ion-selective electrodes(SCISEs)based on solid contact polyaniline doped with chloride(PANI(Cl))and poly(3,4-ethylenedioxythiophene)doped with poly(styrene sulf...The analytical performance of H+-selective solid-contact ion-selective electrodes(SCISEs)based on solid contact polyaniline doped with chloride(PANI(Cl))and poly(3,4-ethylenedioxythiophene)doped with poly(styrene sulfonate)(PEDOT(PSS))was characterized by a developed coulometric signal transduction method.PEDOT(PSS)solid contact is covered by PVC based H+-selective membrane.The obtained coulometric signal demonstrates that the cumulated charge can be amplified by increasing the capacitance of solid contact.SCISEs covered with spin-coated membrane behave faster amperometric response than electrodes with drop-cast mem-brane.In contrast to earlier works,the amperometric response and impedance spectrum demonstrates H+transfer through SCISEs is independent from the thickness of membrane.The exceptional behavior of PANI(Cl)H+-SCISEs shows that the capacitance estimated from impedance spectrum at low frequency 10 mHz and coulometric signal of PANI(Cl)based SCISEs is influenced by the applied po-tentials,whereas PEDOT(PSS)solid contact is independent from the chosen applied potentials.Furthermore,preliminary investiga-tions of coulometric signal transduction on flexible pH sensor implies its potential applications in wearable sensors for sweat ion concentration detection.展开更多
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
文摘In this letter,high power density AlGaN/GaN high electron-mobility transistors(HEMTs)on a freestanding GaN substrate are reported.An asymmetricΓ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance.The breakdown voltage(BV)is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92μm.A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V.The maximum oscillation frequency(f_(max))and unity current gain cut-off frequency(f_(t))of the AlGaN/GaN HEMTs exceed 30 and 20 GHz,respectively.The results demonstrate the potential of AlGaN/GaN HEMTs on freestanding GaN substrates for microwave power applications.
基金supported by the National Natural Science Foundation of China[grant number 42025502]the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004].
基金supported by the National Natural Science Foundation of China(Grant Nos.41991283 and 42005014)College Students’Enterprise and Entrepreneurship Education Program of NUIST(Grant No.201910300095Y)。
文摘In this study, variation in the frequency of thermal discomfort days over China during the period of 1961-2014,including heat discomfort days(HDDs) and cold discomfort days(CDDs), and the influence of external forcings on it are discussed. HDDs are the conditions of overheating and overhumidity(represented by humidity index), and CDDs reflect the dangers from cold temperatures and winds(represented by wind chill index). Observations show significant increases(decreases) in the frequency of HDDs(CDDs) over China from 1961 to 2014, with clear regional distinctions. The historical ALL and greenhouse gas(GHG) simulations can sufficiently reproduce the spatial patterns of the observational trend in the frequency of both HDDs and CDDs over China. Further, the impacts of GHG and anthropogenic forcings on the HDDs(CDDs) are detectable over China, except for central and eastern China, based on the optimal fingerprinting method. GHG forcing is identified as a dominant factor for the observational changes in the frequency of HDDs over southern China;GHG and anthropogenic forcings have dominant effects on the variation in the frequency of CDDs over southwestern China. Although trends in the frequency of HDDs and CDDs in historical aerosol forcing simulations seems to be opposite to observations, an aerosol signal fails to be detected. Natural forcing contributes to the observational variation in the frequency of HDDs over northwestern China. In addition, the future projections of thermal discomfort days indicate that Chinese residents will face more threats of heat discomfort and fewer threats of cold discomfort in the future under global warming.
基金supported by the National Natural Science Foundation of China under Grant U21A20503.
文摘This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11888101,91421107,and 11574004)the National Key Research and Development Program of China(Grant Nos.2018YFA0305602 and 2016YFA0301003)。
文摘Realizing phase transitions via non-thermal sample manipulations is important not only for applications,but also for uncovering the underlying physics.Here,we report on the discovery of two distinct metal–insulator transitions in 1T-TaS_(2) via angle-resolved photoemission spectroscopy and in-situ rubidium deposition.At 205 K,the rubidium deposition drives a normal metal–insulator transition via filling electrons into the conduction band.While at 225 K,however,the rubidium deposition drives a bandwidth-controlled Mott transition as characterized by a rapid collapsing of Mott gap and a loss of spectral weight of the lower Hubbard band.Our result,from a doping-controlled perspective,succeeds in distinguishing the metallic,band-insulating,and Mott-insulating phases of 1T-TaS_(2),manifesting a delicate balance among the electronitineracy,interlayer-coupling and Coulomb repulsion.We also establish an effective method to tune the balance between these interactions,which is useful in seeking exotic electronic phases and designing functional phase-changing devices.
基金supported by the National Key Research and Development Program of China (Grant No.2016YFA0600703)the National Natural Science Foundation of China (Grant No.41805046)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.18KJB170013)the Startup Foundation for Introducing Talent of NUIST (Grant No.2243141701085)the funding of the Jiangsu Innovation and Entrepreneurship Team
文摘This study documents the first two principal modes of interannual variability of midsummer precipitation over Northeast China (NEC) and their associated atmospheric circulation anomalies. It is shown that the first principal mode exhibits the largest amount of variability in precipitation over the south of NEC (referred to as the south mode), whereas the second principal mode behaves with the greatest precipitation anomaly over the north of NEC (referred to as the north mode). Further findings reveal that, through modulating moisture transportation and upper- and lower-troposphere divergence circulation as well as vertical movement over NEC, the anomalous northwestern Pacific anticyclone and the anticyclone centered over northern NEC exert the dominant influence on the south and north modes, respectively. Additionally, it is quantitatively estimated that water vapor across the southern boundary of NEC dominates the moisture budget for the south mode, while the north mode has a close connection with moisture through NEC's northern and western boundal'ies. Furthermore, the north (south) mode is strongly related to the intensity (meridional shift) of the East Asian westerly jet.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41421004 and 41210007)the Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201306026)
文摘This paper documents a decadal strengthened co-variability of the Antarctic Oscillation (AAO) and ENSO in austral spring after the mid-1990s. During the period 1979-93, the ENSO (AAO) spatial signatures are restricted to the tropicsmidlatitudes (Antarctic-midlatitudes) of the Southern Hemisphere (SH), with a weak connection between the two oscillations. Comparatively, after the mid-1990s, the E1 Nifio-related atmospheric anomalies project on a negative AAO pattern with a barotropic structure in the mid-high latitudes of the SH. The expansion of E1 Nifio-related air temperature anomalies have a heightened impact on the meridional thermal structure of the SH, contributing to a weakened circumpolar westerly and strengthened subtropical jet. Meanwhile, the ENSO-related southern three-cell circulations expand poleward and then strongly couple the Antarctic and the tropics. Numerical simulation results suggest that the intensified connection between ENSO and SST in the South Pacific since the mid-1990s is responsible for the strengthened AAO-ENSO relationship.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600703)the National Science Foundation of China (Grant No. 41421004)+2 种基金the Chinese Academy of Sciences– Peking University (CAS–PKU) partnership programsupported by “the Fundamental Research Funds for the Central Universities”partially supported by the U.S. CLIVAR drought working group activity for coordinating and comparing climate model simulations forced by a common set of idealized SST patterns
文摘In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation(NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801604)。
文摘Extreme high temperatures occur frequently over the densely populated Yangtze River basin(YRB)in China during summer,significantly impacting the local economic development and ecological system.However,accurate prediction of extreme high-temperature days in this region remains a challenge.Unfortunately,the Climate Forecast System Version 2(CFSv2)exhibits poor performance in this regard.Thus,based on the interannual increment approach,we develop a hybrid seasonal prediction model over the YRB(HM_(YRB))to improve the prediction of extreme high-temperature days in summer.The HM_(YRB)relies on the following four predictors:the observed preceding April-May snowmelt in north western Europe;the snow depth in March over the central Siberian Plateau;the CFSv2-forecasted concurrent summer sea surface temperatures around the Maritime Continent;and the 200-hPa geopotential height over the Tibetan Plateau.The HM_(YRB)indicates good capabilities in predicting the interannual variability and trend of extreme high-temperature days,with a markable correlation coefficient of 0.58 and a percentage of the same sign(PSS)of 76% during 1983-2015 in the one-year-out cross-validation.Additionally,the HM_(YRB) maintains high PSS skill(86%)and robustness in the independent prediction period(2016-2022).Furthermore,the HM_(YRB) shows a good performance for years with high occurrence of extreme high-temperature days,with a hit ratio of 40%.These predictors used in HM_(YRB)are beneficial in terms of the prediction skill for the average daily maximum temperature in summer over the YRB,albeit with biases existing in the magnitude.Our study provides promising insights into the prediction of 2022-like hot extremes over the YRB in China.
基金supported by the Ministry of Science and Technology of China (No. 2013CB955804)the National Natural Science Foundation of China (Nos. 41175018, 41475113)the Ministry of Environmental Protection of China (Nos. 201209001, 201409008, 201209007)
文摘A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5increased during haze formation. The average masses of SO4^2-, NO3^-and NH4^+were 10.3, 11.7 and 6.7 μg/m^3 during the haze episodes, which exceeded the average(9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient(b sp), aerosol absorption coefficient(b ap) and single scattering albedo(SSA) were 288.7, 27.7 and0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+achieved a small peak at noontime. NO3-showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for b sp and b ap as well as SSA. b sp and b ap showed a positive correlation with PM2.5mass concentration.(NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.
基金supported by the Beijing Municipal Natural Science Foundation(No.8204075)the National Key Research and Development Program of China(No.2016YFC0203302)+2 种基金the National Natural Science Foundation of China(Nos.4147513591744206)the Beijing Nova Program(No.xx2017079).
文摘This study analyzes the impact of circulation types(CTs)on ozone(O_(3))pollution in Beijing.The easterly high-pressure(SWW)circulation occurred most frequently(30%;276 day),followed by northwesterly high-pressure(AN)circulation(24.3%;224 day).The SWW type had the highest O_(3) anomaly of+17.28μg/m^(3),which was caused by excellent photochemical reactions,poor diffusion ability and regional transport.Due to the higher humidity and precipitation in the low-pressure type(C),the O_(3) increase(+8.02μg/m^(3))was less than that in the SWW type.Good diffusion/wet deposition and weak formation ability contributed to O_(3) decrease in AN(-12.54μg/m^(3))and northerly high-pressure(ESN)CTs(-12.26μg/m^(3)).The intra-area transport of O_(3) was significant in polluted circulations(SWW-and C-CTs).In addition,higher temperature,radiation and less rainfall also contributed to higher O_(3) in northern Beijing under the SWW type.For the clean CTs(AN and ESN CTs),precursor amount and intra-area transport played a dominant role in O_(3) distribution.Under the northeasterly low-pressure CT,better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O_(3) values in the south than in the north.The higher O_(3) in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O_(3) concentration in previous day.Annual variation in the CTs contributed up to 86.1%of the annual variation in O_(3).About 78%-83%of the diurnal variation in O_(3) resulted from local meteorological factors.
基金We are grateful to the National Natural Science Foundation of China(22172040,21974031 and 22204026)the Project Funded by China Postdoctoral Science Foundation(2022M710859)+2 种基金the Department of Science and Techniques of Guangdong Province(2021A1515010180,2019B010933001)Guangzhou Municipal Science and Technology Bureau(202102010449)the Department of Guangdong Provincial Public Security(GZQC20-PZ11-FD084)fortheirfinancial support of thiswork.
文摘The analytical performance of H+-selective solid-contact ion-selective electrodes(SCISEs)based on solid contact polyaniline doped with chloride(PANI(Cl))and poly(3,4-ethylenedioxythiophene)doped with poly(styrene sulfonate)(PEDOT(PSS))was characterized by a developed coulometric signal transduction method.PEDOT(PSS)solid contact is covered by PVC based H+-selective membrane.The obtained coulometric signal demonstrates that the cumulated charge can be amplified by increasing the capacitance of solid contact.SCISEs covered with spin-coated membrane behave faster amperometric response than electrodes with drop-cast mem-brane.In contrast to earlier works,the amperometric response and impedance spectrum demonstrates H+transfer through SCISEs is independent from the thickness of membrane.The exceptional behavior of PANI(Cl)H+-SCISEs shows that the capacitance estimated from impedance spectrum at low frequency 10 mHz and coulometric signal of PANI(Cl)based SCISEs is influenced by the applied po-tentials,whereas PEDOT(PSS)solid contact is independent from the chosen applied potentials.Furthermore,preliminary investiga-tions of coulometric signal transduction on flexible pH sensor implies its potential applications in wearable sensors for sweat ion concentration detection.