The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combina...Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator.展开更多
The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu ...The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.展开更多
In this study we report a new reaction pathway in which the hydroxyl and the aldehyde groups of 5-hydroxymethyl furfural were aminated respectively. Hydroxyl group was aminated via Ritter reaction followed by direct r...In this study we report a new reaction pathway in which the hydroxyl and the aldehyde groups of 5-hydroxymethyl furfural were aminated respectively. Hydroxyl group was aminated via Ritter reaction followed by direct reductive amination of aldehyde group. For the Ritter reaction of 5-hydroxymethyl furfural, mixture of trifluoromethane sulfonic acid and phosphoric anhydride showed good performance and the intermediate N-acyl-5-aminomethyl furfural with the highest yield of 89.1 wt% was obtained.Optimization of direct reductive amination of 2,5-bis(aminomethyl) furan was conducted and a yield of45.7 wt% was achieved. This study presents a simple way for preparing bis(amino)furans from renewable biomass based 5-hydroxymethyl furfural, which enriches the biorefinery concept from biomass.展开更多
In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-s...In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-situ generated catalyst system through consecutive dehydration, etherification, and transfer hydrogenation. Specifically, ZrOCl2·8H2O was in-situ decomposed into HCl and ZrO(OH)2 in ethanol, which effectively catalyzed the dehydration/etherification of fructose to 5-ethoxymethylfurfural(EMF) and subsequent reductive etherification of EMF using ethanol as H-donor, respectively. EMF, BEMF and EL were detected as the main products, and total yield of detectable products of up to 65.4% was obtained at 200 ℃ in only 2 h.展开更多
MXene-contained paper is a good choice to design ultrathin and flexible electromagnetic interference(EMI)shielding materials.However,the deficiencies in strength and stability of MXene-contained paper impede its pract...MXene-contained paper is a good choice to design ultrathin and flexible electromagnetic interference(EMI)shielding materials.However,the deficiencies in strength and stability of MXene-contained paper impede its practical applications.Herein,a composite paper was proposed to address the problems,in which a filter paper was modified with a three-layer structured surface via a facile layer-by-layer coating procedure.Specifically,the TEMPO-oxidized cellulose nanofibers(TOCN)/cationic starch(CS)/MXene gel layer and TOCN/MXene nacre structure layer ensured the good EMI shielding and mechanical performances of the composite paper,while the uppermost TOCN/CS hydrogel film layer mainly protected MXene.The composite paper achieved an EMI SE of 40.3 dB at a thickness of merely 0.1894 mm(SE/t value of ca.212.8 dB mm^(−1),SSE/t values of ca.13216 dB cm 2 g^(−1))and the total MXene dosage was 20 g m^(−2).Its tensile strength could be up to 11.7 MPa while the original filter paper was 6.4 MPa.Four pieces of this composite papers could be easily packed together to attain an EMI SE of nearly 70 dB.Importantly,the hydrogel film layer efficiently protected the MXene and maintained the EMI shielding performance of the composite paper when immersed in different liquids including water,HCl(1 M)and ethanol,due to the dense and compact structure of hydrogel film layer.This work provides a practical way to develop ultrathin,flexible and durable EMI shielding materials.展开更多
The reuse of biomass wastes is crucial toward today’s energy and environmental crisis,among which,biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economi...The reuse of biomass wastes is crucial toward today’s energy and environmental crisis,among which,biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economical solutions.In this paper,the recent advances in biofuels and high chemicals for selective production based on biochar catalysts from different biomass wastes are critically summarized.The topics mainly include the modification of biochar catalysts,the preparation of energy products,and the mechanisms of other high-value products.Suitable biochar catalysts can enhance the yield of biofuels and higher-value chemicals.Especially,the feedstock and reaction conditions of biochar catalyst,which affect the efficiency of energy products,have been the focus of recent attentions.Mechanism studies based on biochar catalysts will be helpful to the controlled products.Therefore,the design and advancement of the biochar catalyst based on mechanism research will be beneficial to increase biofuels and the conversion efficiency of chemicals into biomass.The advanced design of biochar catalysts and optimization of operational conditions based on the biomass properties are vital for the selective production of high-value chemicals and biofuels.This paper identifies the latest preparation for energy products and other high-value chemicals based on biochar catalysts progresses and offers insights into improving the yield of high selectivity for products as well as the high recyclability and low toxicity to the environment in future applications.展开更多
Carbon fiber is a kind of new polymer material with excellent mechanical properties and being applied widely.The process of carbon fiber prepared by bamboo tar,including extraction,condensation,spinning,oxidation and ...Carbon fiber is a kind of new polymer material with excellent mechanical properties and being applied widely.The process of carbon fiber prepared by bamboo tar,including extraction,condensation,spinning,oxidation and carbonation,is influenced by the pyrolysis kinetics significantly.In this paper,the thermogravimetric analysis(TGA)of bamboo tar produced in the process of pyrolysis and gasification of the bamboo which is known as Phylostachys sulphurea,was analyzed by the distributed activation energy model(DAEM)to understand the kinetic properties and parameters of bamboo tar.The thermogravimetric analysis of bamboo tar which is used as the raw material of carbon fiber was conducted under 5 different heating rates(i.e.5,10,15,30 and 50℃/min,etc.)in nitrogen atmosphere.The results show that the activation energy of bamboo tar and the exponential factor increased significantly with the increase of the heating rate,and the low heating rate is advantageous to the extraction of bamboo tar solvent and the thermal polycondensation,which can provide scientific reference for the optimization of carbon fiber technology.The thermal weight results show that the temperature range of bamboo tar being decomposed rapidly is 213℃-410℃.The ranges of the activation energy were calculated by DAEM,which have small difference in comparisons with five heating rates when the conversion rate is at 0.1-0.6 and the average value of the activation energy is 119 kJ/mol.The stability range of the activation energy is enlarged when the conversion rate is greater than 0.6 and heating rate increases.展开更多
Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selec...Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selectivity,space–time yield(STY),and stability.Herein,we designed a diatomic catalyst by anchoring Co and Cu sites onto a hierarchical porous N-doped carbon matrix(Co/Cu–N–C).The Co/Cu–N–C is efficient for HAS and is among the best catalysts reported.With a COconversion of 81.7%,C2+OHselectivity could reach 58.5%with an outstanding C2+OH STY of 851.8 mg/g·h.We found that the N4–Co1 and Cu1–N4 showed an excellent synergistic effect.The adsorption of CO occurred on the Co site,and the surrounding nitrogen sites served as a hydrogen reservoir for the CO reduction reactions to form CHxCo.Meanwhile,the Cu sites stabilized a CHOCu species to interact with CHxCo,facilitating a barrier-free formation of C2 species,which is responsible for the high selectivity of higher alcohols.展开更多
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金support from Louisiana Board of Regents[LEQSF(2020-23)-RD-B-02,LEQSF(2018-19)-ENH-DE-06]Key Biomass Energy Laboratory of Henan Province(190506006 and 200606004)National Institute of Forest Science(Seoul,Korea)。
文摘Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator.
基金supported by the National Natural Science Foundation of China(21676223,21706223,21776234,21606188)the Fundamental Research Funds for the Central Universities(20720180084),the Energy development Foundation of Energy College,Xiamen University(2017NYFZ02)+1 种基金the Natural Science Foundation of Fujian Province of China(2018J01017)the Education Department of Fujian Province(JZ160398)~~
文摘The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.
基金the financial support from the National Natural Science Foundation of China(no.21676223 and no.21506177)the Fujian Provincial Development and Reform Commission,China(no.2015489)+1 种基金the Natural Science Foundation of Fujian Province of China(no.2016J01077 and no.2015J05034)the Fundamental Research Funds for the Central Universities of China(nos.20720160077 and 20720160087)
文摘In this study we report a new reaction pathway in which the hydroxyl and the aldehyde groups of 5-hydroxymethyl furfural were aminated respectively. Hydroxyl group was aminated via Ritter reaction followed by direct reductive amination of aldehyde group. For the Ritter reaction of 5-hydroxymethyl furfural, mixture of trifluoromethane sulfonic acid and phosphoric anhydride showed good performance and the intermediate N-acyl-5-aminomethyl furfural with the highest yield of 89.1 wt% was obtained.Optimization of direct reductive amination of 2,5-bis(aminomethyl) furan was conducted and a yield of45.7 wt% was achieved. This study presents a simple way for preparing bis(amino)furans from renewable biomass based 5-hydroxymethyl furfural, which enriches the biorefinery concept from biomass.
基金financial support from the National Natural Science Foundation of China (Grant Nos.21706223 21776234+7 种基金 21676223 21506177)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720160087 20720160077)the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J01077 2015J05034 2014J01209)the Education Department of Fujian Province (Grant No. JZ160398)
文摘In this contribution, one-pot tandem conversion of fructose into biofuel components, including 5-ethoxymethylfurfural(EMF), 2,5-(bis(ethoxymethyl)furan(BEMF) and ethyl levulinate(EL), was performed in an in-situ generated catalyst system through consecutive dehydration, etherification, and transfer hydrogenation. Specifically, ZrOCl2·8H2O was in-situ decomposed into HCl and ZrO(OH)2 in ethanol, which effectively catalyzed the dehydration/etherification of fructose to 5-ethoxymethylfurfural(EMF) and subsequent reductive etherification of EMF using ethanol as H-donor, respectively. EMF, BEMF and EL were detected as the main products, and total yield of detectable products of up to 65.4% was obtained at 200 ℃ in only 2 h.
基金supported by the National Natural Science Foundation of China(Nos.22178208,31901265,22078189)Special Support Program for High Level Talents of Shaanxi Provincethe Postdoctoral Science Foundation of Zhejiang Province.
文摘MXene-contained paper is a good choice to design ultrathin and flexible electromagnetic interference(EMI)shielding materials.However,the deficiencies in strength and stability of MXene-contained paper impede its practical applications.Herein,a composite paper was proposed to address the problems,in which a filter paper was modified with a three-layer structured surface via a facile layer-by-layer coating procedure.Specifically,the TEMPO-oxidized cellulose nanofibers(TOCN)/cationic starch(CS)/MXene gel layer and TOCN/MXene nacre structure layer ensured the good EMI shielding and mechanical performances of the composite paper,while the uppermost TOCN/CS hydrogel film layer mainly protected MXene.The composite paper achieved an EMI SE of 40.3 dB at a thickness of merely 0.1894 mm(SE/t value of ca.212.8 dB mm^(−1),SSE/t values of ca.13216 dB cm 2 g^(−1))and the total MXene dosage was 20 g m^(−2).Its tensile strength could be up to 11.7 MPa while the original filter paper was 6.4 MPa.Four pieces of this composite papers could be easily packed together to attain an EMI SE of nearly 70 dB.Importantly,the hydrogel film layer efficiently protected the MXene and maintained the EMI shielding performance of the composite paper when immersed in different liquids including water,HCl(1 M)and ethanol,due to the dense and compact structure of hydrogel film layer.This work provides a practical way to develop ultrathin,flexible and durable EMI shielding materials.
基金supported by the National Natural Science Foundation of China(Grant No.52100185)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40282)+2 种基金the Training Program for Excellent Young Innovators of Changsha(kq2106087,kq2106088)the Science and Technology Innovation Program of Hunan Province(2021RC2100,2021SK2040,2019SK2191)the National Key R&D Program of China(No.2018YFC1901203).
文摘The reuse of biomass wastes is crucial toward today’s energy and environmental crisis,among which,biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economical solutions.In this paper,the recent advances in biofuels and high chemicals for selective production based on biochar catalysts from different biomass wastes are critically summarized.The topics mainly include the modification of biochar catalysts,the preparation of energy products,and the mechanisms of other high-value products.Suitable biochar catalysts can enhance the yield of biofuels and higher-value chemicals.Especially,the feedstock and reaction conditions of biochar catalyst,which affect the efficiency of energy products,have been the focus of recent attentions.Mechanism studies based on biochar catalysts will be helpful to the controlled products.Therefore,the design and advancement of the biochar catalyst based on mechanism research will be beneficial to increase biofuels and the conversion efficiency of chemicals into biomass.The advanced design of biochar catalysts and optimization of operational conditions based on the biomass properties are vital for the selective production of high-value chemicals and biofuels.This paper identifies the latest preparation for energy products and other high-value chemicals based on biochar catalysts progresses and offers insights into improving the yield of high selectivity for products as well as the high recyclability and low toxicity to the environment in future applications.
基金This work was financially supported by the National Natural Science Foundation of China(551376056)“Study of regulation mechanisms and photo-thermal properties of photosynthetic hydrogen production under the condition of multiphase biomass flow”.
文摘Carbon fiber is a kind of new polymer material with excellent mechanical properties and being applied widely.The process of carbon fiber prepared by bamboo tar,including extraction,condensation,spinning,oxidation and carbonation,is influenced by the pyrolysis kinetics significantly.In this paper,the thermogravimetric analysis(TGA)of bamboo tar produced in the process of pyrolysis and gasification of the bamboo which is known as Phylostachys sulphurea,was analyzed by the distributed activation energy model(DAEM)to understand the kinetic properties and parameters of bamboo tar.The thermogravimetric analysis of bamboo tar which is used as the raw material of carbon fiber was conducted under 5 different heating rates(i.e.5,10,15,30 and 50℃/min,etc.)in nitrogen atmosphere.The results show that the activation energy of bamboo tar and the exponential factor increased significantly with the increase of the heating rate,and the low heating rate is advantageous to the extraction of bamboo tar solvent and the thermal polycondensation,which can provide scientific reference for the optimization of carbon fiber technology.The thermal weight results show that the temperature range of bamboo tar being decomposed rapidly is 213℃-410℃.The ranges of the activation energy were calculated by DAEM,which have small difference in comparisons with five heating rates when the conversion rate is at 0.1-0.6 and the average value of the activation energy is 119 kJ/mol.The stability range of the activation energy is enlarged when the conversion rate is greater than 0.6 and heating rate increases.
基金the National Key Research and Development Program of China(grant nos.2019YFB1503903,2019YFB1503904,and 2018YFB1501403)The Natural Science Foundation of Fujian Province of China(grant no.2019J06005).
文摘Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selectivity,space–time yield(STY),and stability.Herein,we designed a diatomic catalyst by anchoring Co and Cu sites onto a hierarchical porous N-doped carbon matrix(Co/Cu–N–C).The Co/Cu–N–C is efficient for HAS and is among the best catalysts reported.With a COconversion of 81.7%,C2+OHselectivity could reach 58.5%with an outstanding C2+OH STY of 851.8 mg/g·h.We found that the N4–Co1 and Cu1–N4 showed an excellent synergistic effect.The adsorption of CO occurred on the Co site,and the surrounding nitrogen sites served as a hydrogen reservoir for the CO reduction reactions to form CHxCo.Meanwhile,the Cu sites stabilized a CHOCu species to interact with CHxCo,facilitating a barrier-free formation of C2 species,which is responsible for the high selectivity of higher alcohols.