期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrochemical and Photoelectrochemical Properties of Nano-Islands of Zinc and Niobium Oxides Deposited on Aluminum Thin Film by RF Magnetron Reactive Sputtering
1
作者 Go Sajiki Yasuhiko Benino +1 位作者 tokuro nanba Hiroshi Okano 《Materials Sciences and Applications》 2015年第4期292-309,共18页
Zinc oxide (ZnO) and niobium oxide (NbOx) with a nano-island structure were deposited by a sputtering method on Al-coated glass substrates. Cells with a (ZnO or NbOx)/Al/glass|KNO3aq.|Al/ glass structure were assemble... Zinc oxide (ZnO) and niobium oxide (NbOx) with a nano-island structure were deposited by a sputtering method on Al-coated glass substrates. Cells with a (ZnO or NbOx)/Al/glass|KNO3aq.|Al/ glass structure were assembled, and electrochemical and photoelectrochemical properties were evaluated. The ZnO and NbOx electrodes had higher electrode potentials than the counter Al/glass electrode, and electron flows from the counter electrode to the ZnO and NbOx electrodes through the external circuit were commonly confirmed. In the ZnO-based cell, only faint photocurrent generation was seen, where Zn and Al elution from the ZnO electrode was found. In the NbOxbased cell, however, stable generation of electricity was successfully achieved, and electrode corrosion was not recognized even in microscopic observations. A photoelectrochemical conversion model was proposed based on potential-pH diagrams. In the case of nano-island structures formed at shorter NbOx deposition time, it was concluded that the photoelectrochemical reactions, which were proceeded in the immediate vicinity of the boundary among nano-islands, substrate, and electrolyte solution, were predominant for the photoelectrochemical conversion, and in the case of film structures with longer deposition time, the predominant reactions took place at the film surface. 展开更多
关键词 Nano-Island Electrochemistry PHOTOELECTROCHEMISTRY NIOBIUM and ZINC Oxide Corrosion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部