Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-l.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materi...Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-l.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably. It was observed that monophase compound layer, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.展开更多
Gamma-based titanium aluminides have great potential in the automotive industries (e.g. valves in a car engine), but tribological property could be one of the crucial factors in determining the life and performance of...Gamma-based titanium aluminides have great potential in the automotive industries (e.g. valves in a car engine), but tribological property could be one of the crucial factors in determining the life and performance of a titanium aluminide part. A surface modification technique, namely ceramic conversion (CC) treatment has been developed to improve the tribological properties of a y-based titanium aluminide (Ti-48AI-2Nb-2Cr-B), and the surface properties were fully characterised. The results indicate that ceramic conversion treatment can produce an oxide layer consisting of a top TiO2 surface followed by a mixture of TiO2 and A12O3. Such hardened layer has significantly improved the load-bearing capacity and wear resistance of the intermetallics, as evidenced by an increase of scuffing load up to 4 times and a wear rate reduction of two orders of magnitude. The coefficient of friction has also been reduced from 0.5-0.7 for the untreated to an average of 0.22 for the CC-treated alloy under dry sliding contact conditions.展开更多
文摘Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-l.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably. It was observed that monophase compound layer, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.
文摘Gamma-based titanium aluminides have great potential in the automotive industries (e.g. valves in a car engine), but tribological property could be one of the crucial factors in determining the life and performance of a titanium aluminide part. A surface modification technique, namely ceramic conversion (CC) treatment has been developed to improve the tribological properties of a y-based titanium aluminide (Ti-48AI-2Nb-2Cr-B), and the surface properties were fully characterised. The results indicate that ceramic conversion treatment can produce an oxide layer consisting of a top TiO2 surface followed by a mixture of TiO2 and A12O3. Such hardened layer has significantly improved the load-bearing capacity and wear resistance of the intermetallics, as evidenced by an increase of scuffing load up to 4 times and a wear rate reduction of two orders of magnitude. The coefficient of friction has also been reduced from 0.5-0.7 for the untreated to an average of 0.22 for the CC-treated alloy under dry sliding contact conditions.