期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Deserpentinization and high-pressure(eclogite-facies) metamorphic features in the Eoarchean ultramafic body from Isua,Greenland
1
作者 Juan Miguel Guotana tomoaki morishita +6 位作者 Ikuya Nishio Akihiro Tamura Tomoyuki Mizukami Kenichiro Tani Yumiko Harigane Kristoffer Szilas D.Graham Pearson 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期297-309,共13页
Discontinuous chains of ultramafic rock bodies form part of the 3800–3700 Ma Isua Supracrustal Belt(ISB),hosted in the Itsaq Gneiss Complex of southwestern Greenland.These bodies are among the world’s oldest outcrop... Discontinuous chains of ultramafic rock bodies form part of the 3800–3700 Ma Isua Supracrustal Belt(ISB),hosted in the Itsaq Gneiss Complex of southwestern Greenland.These bodies are among the world’s oldest outcrops of ultramafic rocks and hence an invaluable geologic record.Ultramafic rocks from Lens B in the northwestern limb of ISB show characteristics of several stages of serpentinization and deserpentinization forming prograde and retrograde mineral assemblages.Ti-rich humite-group minerals such as titanian chondrodite(Ti-Chn)and titanian clinohumite(Ti-Chu)often occur as accessory phases in the metamorphosed ultramafic rocks.The Ti-rich humite minerals are associated with metamorphic olivine.The host olivine is highly forsteritic(Fo96-98)with variable Mn O and Ni O contents.The concentrations of the rare-earth elements(REE)and high-field strength elements(HFSE)of the metamorphic olivine are higher than typical mantle olivine.The textural and chemical characteristics of the olivine indicate metamorphic origin as a result of deserpentinization of a serpentinized ultramafic protolith rather than primary assemblage reflecting mantle residues from high-degrees of partial melting.The close association of olivine,antigorite and intergrown Ti-Chn and Ti-Chu suggests pressure condition between$1.3–2.6 GPa within the antigorite stability field(<700°C).The overall petrological and geochemical features of Lens B ultramafic body within the Eoarchean ISB indicate that these are allochthonous ultramafic rocks that recorded serpentine dehydration at relatively lower temperature and reached eclogite facies condition during their complex metamorphic history similar to exhumed UHP ultramafic rocks in modern subduction zone channels. 展开更多
关键词 Titanian chondrodite Titanian clinohumite Isua supracrustal belt UHP Deserpentinization
下载PDF
Chemical Variation of Chromian Spinel Compositions in a Serpentinized Peridotites: Implications for Evolution of the Neoproterozoic Ophiolites
2
作者 Hamed Gamal EL DIEN tomoaki morishita +3 位作者 Mohamed HAMDY Abdel Salam ABU EL-ELA Adel HASSAN Yusuke SODA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期210-,共1页
Tectonic setting of the Neoproterozoic ophiolites is poorly understood.Because of extensive serpentinization/metamorphism in the mantle section,accessory chromian spinel has been used as an important geotectonic indic... Tectonic setting of the Neoproterozoic ophiolites is poorly understood.Because of extensive serpentinization/metamorphism in the mantle section,accessory chromian spinel has been used as an important geotectonic indicator. 展开更多
关键词 Chemical Variation of Chromian Spinel Compositions in a Serpentinized Peridotites Implications for Evolution of the Neoproterozoic Ophiolites
下载PDF
Origin and Evolution of Ultramafic Rocks along the Sagaing Fault, Myanmar
3
作者 tomoaki morishita Hnin Min Soe +6 位作者 Hla Htay Than Htut Lwin Juan Miguel Guotana Akihiro Tamura Tomoyuki Mizukami Khin Zaw 《Journal of Earth Science》 SCIE CAS CSCD 2023年第1期122-132,共11页
The active Sagaing fault in Myanmar defines the boundary between the Indian Plate and the Eurasian Plate and causes seismic damage in the major cities of Myanmar. Small bodies of serpentinite occur along the fault. We... The active Sagaing fault in Myanmar defines the boundary between the Indian Plate and the Eurasian Plate and causes seismic damage in the major cities of Myanmar. Small bodies of serpentinite occur along the fault. We for the first time investigated the highly sheared serpentinite bodies in the Sheinmagar area and Yega Inn area along the Sagaing fault. Extensively sheared/brecciated serpentinites and related rocks, such as talc and/or chlorite-bearing rocks contains small rock fragments of serpentinites. Serpentine texture and mineral chemistry indicate that the protolith of these serpentinites were mainly harzburgite with minor amounts of dunite, some of which are cut by gabbroic veins. No shape-preferred orientation of the antigorite is present, indicating that the serpentinization was occurred under relatively static conditions. Protolith and serpentine minerals are similar to those of the jadeitite-bearing serpentinites in the north of the Sagaing fault(the Jade Mine belt). Chemical variations of spinels in the studied area are within the compositional range of forearc peridotites and those in the mantle section of nearby ophiolites. After the formation of antigorite serpentinite under static conditions, these serpentinites were subsequently, but locally deformed, probably due to the activity of the Sagaing fault, resulting in the formation of serpentinite schist/brecciated rock. The presence of the less-deformed antigorite serpentinite in the sheared/brecciated zone indicates the strain localization mainly along the surrounding serpentine-talc(±chlorite) schistose rocks, which is probably formed by the reaction between serpentinite and country rocks. Further studies are needed to better understand whether the distribution of serpentinized peridotites cause variations in the activity of the Sagaing fault. 展开更多
关键词 Sagaing fault SERPENTINITE DEFORMATION OPHIOLITE
原文传递
Zircon within chromitite requires revision of the tectonic history of the Eoarchean Itsaq Gneiss complex,Greenland
4
作者 Hikaru Sawada tomoaki morishita +6 位作者 Adrien Vezinet Richard Stern Kenichiro Tani Ikuya Nishio Kanta Takahashi D.Graham Pearson Kristoffer Szilas 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第6期273-285,共13页
The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.8... The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.81 Ga zircon U-Pb age of the surrounding orthogneiss.This study obtained zircon from the chromitite within this unit as well as granitoid sheets that intruded into the UNL unit.In-situ U-Pb-Hf-O isotope measurements were made on the zircons.Zircons from both the chromitite and the intrusive granitoids show concordant U-Pb ages of ca.2.97-2.95 Ga.In contrast,Hf and 0 isotopic anal-yses indicate that zircons in the chromitites have a different origin from those in the intrusive granitoids.Zircons from granitoids yielded Th/U ratios higher than 0.2,initial Hf isotope ratios of 0.2805-0.2807(i.e,initial:Hf value of-11 to-5),andδ^(18)O values of mostly 6.0‰-7.0‰,which are typical for felsic igneous rocks in Archean continental crust.The least altered zircons from a chromitite exhibited initial Hf isotope ratios of 0.28078-0.28084(i.e.,initial:Hf value of-1.1 to-0.4),close the chondritic value at ca.3.0 Ga and the depleted mantle at ca.3.2 Ga.These zircons also haveδ^(18)O values of 4.2‰6.1‰which correspond to typical mantle values.The other chromitite zircons yielded Th/U ratios lower than 0.1,and Hf and 0 isotopic compositions ranging between the least altered zircons and the intrusive granitoid zir-cons.These results indicate that the zircons in the chromitites crystallized before or during the 2.97-2.95 Ga granitoid intrusion and most of the zircons were altered by subsequent metasomatism.Furthermore,the present results suggest that zircons in the chromitites originally had depleted Hf iso-topic compositions at ca.3.2-3.0 Ga.This can be explained by two different models of the evolution of the UNL unit.One is that if the UNL unit was formed at>3.81 Ga as previously thought,with the zircons in the chromitites subsequently being precipitated by ca.3.2-2.95 Ga during metamorphism or metaso-matism.The other model is that the UNL unit itself was actually formed at ca.3.2-3.0 Ga,with zircon in the chromitite representing the crystallisation age of the unit,which was then tectonically incorporated into the ca.3.81 Ga orthogneiss prior to the 2.97-2.95 Ga granitoid intrusion event.In either case,our zircon analyses reveal significant evolutionary history prior to depleted mantle Hf model ages of 3.2-2.95 Ga.Revision of the geotectonic evolution of the UNL unit and the Itsaq Gneiss Complex is therefore required. 展开更多
关键词 Archean Itsaq gneiss complex Ultramafic rock METASOMATISM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部