期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dose Distributions in Simulated Electron Radiotherapy with Intraoral Cones Using Treatment Planning System
1
作者 tomohiro shimozato Kuniyasu Okudaira 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2017年第3期280-289,共10页
Aim: This study aims to evaluate the difference between depth data from an intraoral cone and a conventional irradiation tube calculated using a treatment planning system (TPS), and that measured using an intraoral co... Aim: This study aims to evaluate the difference between depth data from an intraoral cone and a conventional irradiation tube calculated using a treatment planning system (TPS), and that measured using an intraoral cone for electron radiotherapy. Background: A TPS is only compatible with conventional irradiation tubes. However, such systems are not suitable for determining dose distributions when a special cone is employed. Materials and Methods: Dose distributions were calculated using the beam data for mounted intraoral cones using a TPS. Then, the dose distribution by field size was calculated for a low-melting-point lead alloy using the beam data for a mounted conventional tube. The calculated data were evaluated against the measured intraoral-cone depth data based on the dose and depth differences. Results: The calculated data for the intraoral cone case did not match the measured data. However, the depth data obtained considering the field size determined for the lead alloy using the conventional tube were close to the measured values for the intraoral cone case. The difference in the depth at which the absorbed dose was 50% of the maximum value of the percentage depth dose was less than ±4 mm for the generalized Gaussian pencil beam convolution algorithm and less than ±1 mm for the electron Monte Carlo algorithm. Conclusion: It was found that the measured and calculated dose distributions were in agreement, especially when then electron Monte Carlo algorithm was used. Thus, the TPS can be employed to determine dose distributions for intraoral cone applications. 展开更多
关键词 Treatment Planning System ELECTRON RADIOTHERAPY INTRAORAL CONE Depth DOSE Algorithm
下载PDF
Direct Measurement of Medical Linear Accelerator Electron Beam Width at Scattering Foil Position
2
作者 tomohiro shimozato Yuichi Aoyama 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2017年第1期1-7,共7页
Purpose: The aim of this study was to develop a method for the direct measurement of electron beam width and distribution at the scattering foil on the carrousel in a medical linear accelerator gantry head, which diff... Purpose: The aim of this study was to develop a method for the direct measurement of electron beam width and distribution at the scattering foil on the carrousel in a medical linear accelerator gantry head, which differs from an existing indirect method for measuring the focal spot size using a camera or metallic slit located outside the gantry head. Methods: The electron beam emitted by the linear accelerator was used to irradiate radiochromic film mounted on the scattering foil on the carrousel, which was not used for clinical treatment. The electron beam width at the scattering foil position was then evaluated using the full width at half maximum of the Gaussian distribution approximated from each one dimensional distribution of the irradiated radiochromic film. Results: The electron beam width at the scattering foil position was found to be 3.1 to 6.4 mm in the crossline direction and 2.8 to 5.5 mm in the inline direction with electron energy of 4 to 16 MeV. The two-dimensional distribution of the electron beam was therefore elliptical or distorted in shape, not circular. Conclusions: Direct measurement of the electron beam width at the scattering foil in the carrousel of a medical linear accelerator is possible, though the use of lower sensitivity film in addition to indirect methods is expected to bring about better results. However, as this method does not allow for direct measurement of the incident angle of the accelerated electron beam, further improvements and refinements are still needed. 展开更多
关键词 MEDICAL Linear ACCELERATOR ELECTRON Beam Distribution Radiochromic Film SCATTERING FOIL
下载PDF
Periodic Measurements of Passive Proton Beam Width Using Radiochromic Film in Fixed Gantry System
3
作者 tomohiro shimozato Keisuke Yasui +1 位作者 Hireto Kinou Fumiaki Komatsu 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2019年第4期193-203,共11页
Background and Aim: Irradiation methods such as double scattering method and spot scanning method have been used in proton beam treatment devices. In the scattering method, a ridge filter or a range modulation wheel i... Background and Aim: Irradiation methods such as double scattering method and spot scanning method have been used in proton beam treatment devices. In the scattering method, a ridge filter or a range modulation wheel is used to create a spread-out Bragg peak, but the distribution at the patient position may change due to positional deviation of the incident beam. Therefore, assessment of the incident position of the beam is very important even in the scattering method. To investigate the width and distribution of the proton beam before entering the RMW, a radiochromic film was installed at the outlet of the transport pipe and the entrance of the profile-monitoring detector. Methods: In this study, the distributions of the beam at the exit of the transport pipe and the entrance of the monitor detector were measured using films. The beam width was measured from the full width at half maximum of the profile obtained from the distribution. Measurements were conducted every month for 10 months. Results: Beams of widths ranging from 1.82 to 2.30 mm in the horizontal direction and 4.25 to 5.33 mm in the vertical direction were outputted from the exit of the transport pipe. Beams of widths ranging from 2.16 to 2.67 mm in the horizontal direction and 4.06 to 5.31 mm in the vertical direction were outputted from the entrance of the monitor detector. The maximum width fluctuation for 10 months was 0.55 mm in the horizontal direction and 1.26 mm in the vertical direction at the entrance of the monitor detector. Conclusions: The distribution was obtained before the proton beam was scattered by the scatterer, and then we propose a method to periodically measure and monitor the changes in the beam distributions every month. 展开更多
关键词 PROTON BEAM BEAM WIDTH Radiochromic Film PERIODIC Measurement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部