期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Magnetic Particle Imaging for Magnetic Hyperthermia Treatment: Visualization and Quantification of the Intratumoral Distribution and Temporal Change of Magnetic Nanoparticles in Vivo 被引量:5
1
作者 tomomi kuboyabu Isamu Yabata +4 位作者 Marina Aoki Natsuo Banura Kohei Nishimoto Atsushi Mimura Kenya Murase 《Open Journal of Medical Imaging》 2016年第1期1-15,共15页
Purpose: Magnetic hyperthermia treatment (MHT) is a strategy for cancer therapy using the tem-perature rise of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Re-cently, a new imaging method c... Purpose: Magnetic hyperthermia treatment (MHT) is a strategy for cancer therapy using the tem-perature rise of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Re-cently, a new imaging method called magnetic particle imaging (MPI) has been introduced. MPI allows imaging of the spatial distribution of MNPs. The purpose of this study was to investigate the feasibility of visualizing and quantifying the intratumoral distribution and temporal change of MNPs and predicting the therapeutic effect of MHT using MPI. Materials and Methods: Colon-26 cells (1 × 106 cells) were implanted into the backs of eight-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, mice were divided into untreated (n = 10) and treated groups (n = 27). The tumors in the treated group were directly injected with MNPs (Resovist?) with iron concentrations of 500 mM (A, n = 9), 400 mM (B, n = 8), and 250 mM (C, n = 10), respectively, and MHT was performed using an AMF with a frequency of 600 kHz and a peak amplitude of 3.5 kA/m. The mice in the treated group were scanned using our MPI scanner immediately before, immediately after, 7 days, and 14 days after MHT. We drew a region of interest (ROI) on the tumor in the MPI image and calculated the average, maximum, and total MPI values and the number of pixels by taking the threshold value for extracting the contour as 40% of the maximum MPI value (pixel value) within the ROI. These parameters in the untreated group were taken as zero. We also measured the relative tumor volume growth (RTVG) defined by (V-V0)/V0, where V0 and V are the tumor volumes immediately before and after MHT, respectively. Results: The average, maximum, and total MPI values decreased up to 7 days after MHT and remained almost constant thereafter in all groups, whereas the number of pixels tended to increase with time. The RTVG values in Groups A and B were significantly lower than those in the control group 3 days or more and 5 days or more after MHT, respectively. The above four parameters were significantly inversely correlated with the RTVG values 5, 7, and 14 days after MHT. Conclusion: MPI can visualize and quantify the intratumoral distribution and temporal change of MNPs before and after MHT. Our results suggest that MPI will be useful for predicting the therapeutic effect of MHT and for the treatment planning of MHT. 展开更多
关键词 Magnetic Particle Imaging Magnetic Hyperthermia Treatment Magnetic Nanoparticles Intratumoral Distribution Temporal Change
下载PDF
Usefulness of Magnetic Particle Imaging for Monitoring the Effect of Magnetic Targeting 被引量:1
2
作者 tomomi kuboyabu Akiko Ohki +1 位作者 Natsuo Banura Kenya Murase 《Open Journal of Medical Imaging》 2016年第2期33-41,共9页
Purpose: Magnetic targeting refers to the attachment of therapeutic agents to magnetizable particles such as magnetic nanoparticles (MNPs) and then applying magnetic fields to concentrate them to the targeted region s... Purpose: Magnetic targeting refers to the attachment of therapeutic agents to magnetizable particles such as magnetic nanoparticles (MNPs) and then applying magnetic fields to concentrate them to the targeted region such as solid tumors. The purpose of this study was to investigate the usefulness of magnetic particle imaging (MPI) for monitoring the effect of magnetic targeting using tumor-bearing mice. Materials and Methods: Colon-26 cells (1 × 106 cells) were implanted into the backs of eight-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, the mice were divided into treated (n = 8) and untreated groups (n = 8). The tumors in the treated group were directly injected with MNPs (Resovist?, 250 mM) and a neodymium magnet was attached to the tumor surface, whereas the magnet was not attached to the tumor in the untreated group. The mice were imaged using our MPI scanner and the average and maximum MPI values were obtained by drawing a region of interest (ROI) on the tumor, with the threshold value for extracting the contour of the tumor being taken as 40% of the maximum MPI value in the ROI. The relative tumor volume growth (RTVG) was calculated from (V ? V0)/V0, where V0 and V represented the tumor volume immediately before and after the injection of MNPs, respectively. Results: The average and maximum MPI values in the treated group were significantly higher than those in the untreated group 3 days after the injection of MNPs, suggesting the effectiveness of magnetic targeting. There were no significant differences in RTVG between the two groups. Conclusion: Our preliminary results suggest that MPI is useful for monitoring the effect of magnetic targeting. 展开更多
关键词 Magnetic Particle Imaging Magnetic Targeting Magnetic Nanoparticles Tumor-Bearing Mice
下载PDF
Usefulness of Magnetic Particle Imaging for Predicting the Therapeutic Effect of Magnetic Hyperthermia 被引量:4
3
作者 Kenya Murase Marina Aoki +4 位作者 Natsuo Banura Kohei Nishimoto Atsushi Mimura tomomi kuboyabu Isamu Yabata 《Open Journal of Medical Imaging》 2015年第2期85-99,共15页
Purpose: To investigate the usefulness of magnetic particle imaging (MPI) for predicting the therapeutic effect of magnetic hyperthermia (MH). Materials and Methods: First, we performed phantom experiments to investig... Purpose: To investigate the usefulness of magnetic particle imaging (MPI) for predicting the therapeutic effect of magnetic hyperthermia (MH). Materials and Methods: First, we performed phantom experiments to investigate the relationship between the MPI value and the temperature rise of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). The MPI value was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. Samples filled with various iron concentrations of MNPs (Resovist&reg;) were prepared and were imaged using our MPI scanner. These samples were also heated using the AMF, and the specific loss power (SLP) and volume-specific loss power (vSLP) were calculated from the initial slope of the time-dependent temperature rise. Second, we performed animal experiments using tumor-bearing mice, which were divided into untreated (n = 10) and treated groups (n = 20). The tumors in the treated group were injected with Resovist&reg;?at an iron concentration of 250 mM (n = 10) or 500 mM (n = 10), and received MH for 20 min, during which the temperatures in the tumor and rectum were measured. The relative tumor volume growth (RTVG) was calculated from (V15 -?V0)/V0, where V0 and V15 represented the tumor volume on day 0 and day 15 after MH, respectively. Results: In phantom experiments, the MPI value had significant correlations with the iron concentration of MNPs (r = 0.997), temperature rise (r = 0.981), and vSLP (r = 0.961). In animal experiments, the MPI value had significant correlations with the temperature rise in the tumor (r = 0.731) and RTVG (r = ﹣0.687). Conclusion: Our preliminary results suggest that MPI is useful for predicting the therapeutic effect of MH. 展开更多
关键词 MAGNETIC Particle IMAGING MAGNETIC HYPERTHERMIA MAGNETIC Nanoparticles PHANTOM EXPERIMENTS Animal EXPERIMENTS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部