It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot base...It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5. 3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator( CPG) and PD controller is presented,which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.展开更多
In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
The cover picture is taken from the article "Lateral Dynamic Analysis and Motion Control of a Jet Trencher in Ocean Currents",and it shows a jet trencher working in ocean currents for which the stable trench...The cover picture is taken from the article "Lateral Dynamic Analysis and Motion Control of a Jet Trencher in Ocean Currents",and it shows a jet trencher working in ocean currents for which the stable trenching operation route is important.The jet trencher is simplified into a single degree of freedom model with restoring and damping force.The nonlinear mathematical model of展开更多
In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a sing...In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a single degree of freedom model with restoring and damping force. The nonlinear mathematical model of the trencher laterally oscillating in ocean currents is established,and its approximate analytical solution is obtained.Results show that the analytical solution has small differences with numerical solution based on the fourth-order Runge-Kutta method and can effectively describe the underwater oscillation. A double-loop PID controller is designed to control the lateral motion displacement of the trencher to return to the center of the pipeline route which is effective and robust for the propulsion system.展开更多
A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SR...A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles.展开更多
In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller...In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.展开更多
AIM: To determine the expression of PGH synthase-1and the sensitivity of vascular smooth muscle to PGH_2in the aorta from the SHR at an age when noendothelium-dependent contractions to acetylcholine areobserved under ...AIM: To determine the expression of PGH synthase-1and the sensitivity of vascular smooth muscle to PGH_2in the aorta from the SHR at an age when noendothelium-dependent contractions to acetylcholine areobserved under control conditions. METHODS: Allexperiments were performed in parallel on aortas from20-wk-old SHR and Wistar-Kyoto normotensive rats(WKY). Rings, with or without endothelium, weresuspended in conventional organ chambers for therecording of changes in isometric force. Theexpression of PGH Synthase-1 was evaluated by展开更多
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5. 3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator( CPG) and PD controller is presented,which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
文摘The cover picture is taken from the article "Lateral Dynamic Analysis and Motion Control of a Jet Trencher in Ocean Currents",and it shows a jet trencher working in ocean currents for which the stable trenching operation route is important.The jet trencher is simplified into a single degree of freedom model with restoring and damping force.The nonlinear mathematical model of
基金Sponsored by the High Technology Ship Research and Program of Ministry of Industry and Information Technology of the People's Republic of China(Grant No.539[2012])the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120073120014)
文摘In order to control the lateral motion of a jet trencher which is important for stable trenching operation,the oscillation characteristics of the jet trencher are researched. The jet trencher is simplified into a single degree of freedom model with restoring and damping force. The nonlinear mathematical model of the trencher laterally oscillating in ocean currents is established,and its approximate analytical solution is obtained.Results show that the analytical solution has small differences with numerical solution based on the fourth-order Runge-Kutta method and can effectively describe the underwater oscillation. A double-loop PID controller is designed to control the lateral motion displacement of the trencher to return to the center of the pipeline route which is effective and robust for the propulsion system.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51109132)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073120015)
文摘A hybrid remotely operated underwater vehicle( HROV) capable of working to the full ocean depth has been developed. In order for the vehicle to achieve a certain survivability level,a self-repairing control system( SRCS) has been designed. It consists of two basic technologies,fault diagnosis and isolation( FDI) and reconfigurable control. For FDI,a model-based hierarchical fault diagnosis system is designed for the HROV. Then,control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies,it can obtain the fundamental frame of SRCS for the HROV. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes,an assessment of the HROV's survivability is vitally needed before it enters operational service. This paper presents a new definition of survivability for underwater vehicles and develops a simple survivability model for the SRCS. As a result of survivability assessment for the SRCS,we are able to figure out the survivability of SRCS and make further optimization about it. The methodology developed herein is also applicable to other types of underwater vehicles.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.
文摘AIM: To determine the expression of PGH synthase-1and the sensitivity of vascular smooth muscle to PGH_2in the aorta from the SHR at an age when noendothelium-dependent contractions to acetylcholine areobserved under control conditions. METHODS: Allexperiments were performed in parallel on aortas from20-wk-old SHR and Wistar-Kyoto normotensive rats(WKY). Rings, with or without endothelium, weresuspended in conventional organ chambers for therecording of changes in isometric force. Theexpression of PGH Synthase-1 was evaluated by