The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the...The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.展开更多
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate...Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.展开更多
Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of was...Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of wasp-larvae by protecting them against the immune system of their Lepidopteran host.However,the relationship between prey pests and viruses found in predatory natural enemies remains unclear.Herein,we report the interaction between Arma chinensis virus-1(AcV-1),originally isolated from a predatory natural enemy,Arma chinensis(Hemiptera:Pentatomidae),and one of its prey species,Spodoptera frugiperda(Lepidoptera:Noctuidae).The results showed that the AcV-1 virus appeared harmful to the novel host S.frugiperda by inhibiting larval diet consumption and increasing pupal mortality.Meanwhile,sequencing data indicated that the virus altered the gene expression profiles of S.frugiperda.KEGG analysis showed that the proteasome and phagosome pathways related to protein degradation and immune response were significantly enriched.Although the expression levels of digestive enzyme genes did not change significantly,the total protease activity of AcV-1 virus-positive individuals was significantly decreased,suggesting that the virus inhibited diet consumption of S.frugiperda via the down-regulation of digestive enzyme activities.These results indicate that a virus initially isolated in a predatory natural enemy can decrease the fitness of its prey species.The virus was found to impact the host proteasome and phagosome pathways related to protein degradation and immunity,providing a potential mechanism to enhance controlling efficiency.展开更多
Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to creat...Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.展开更多
Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.Thi...Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.展开更多
BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression...BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression.AIM To establish a CAFs-associated prognostic signature to improve BC patient out-come estimation.METHODS We retrieved the transcript profile and clinical data of 1072 BC samples from The Cancer Genome Atlas(TCGA)databases,and 3661 BC samples from the The Gene Expression Omnibus.CAFs and immune cell infiltrations were quantified using CIBERSORT algorithm.CAF-associated gene identification was done by weighted gene co-expression network analysis.A CAF risk signature was established via univariate,least absolute shrinkage and selection operator regression,and mul-tivariate Cox regression analyses.The receiver operating characteristic(ROC)and Kaplan-Meier curves were employed to evaluate the predictability of the model.Subsequently,a nomogram was developed with the risk score and patient clinical signature.Using Spearman's correlations analysis,the relationship between CAF risk score and gene set enrichment scores were examined.Patient samples were collected to validate gene expression by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS Employing an 8-gene(IL18,MYD88,GLIPR1,TNN,BHLHE41,DNAJB5,FKBP14,and XG)signature,we attemp-ted to estimate BC patient prognosis.Based on our analysis,high-risk patients exhibited worse outcomes than low-risk patients.Multivariate analysis revealed the risk score as an independent indicator of BC patient prognosis.ROC analysis exhibited satisfactory nomogram predictability.The area under the curve showed 0.805 at 3 years,and 0.801 at 5 years in the TCGA cohort.We also demonstrated that a reduced CAF risk score was strongly associated with enhanced chemotherapeutic outcomes.CAF risk score was significantly correlated with most hallmark gene sets.Finally,the prognostic signature were further validated by qRT-PCR.CONCLUSION We introduced a newly-discovered CAFs-associated gene signature,which can be employed to estimate BC patient outcomes conveniently and accurately.展开更多
BACKGROUND Some patients with coronary atherosclerotic heart disease experience major adverse cardiac events(MACE)and require readmission after Coronary Artery Bypass Grafting(CABG)surgery.This is often attributed to ...BACKGROUND Some patients with coronary atherosclerotic heart disease experience major adverse cardiac events(MACE)and require readmission after Coronary Artery Bypass Grafting(CABG)surgery.This is often attributed to patients'unhealthy lifestyles and dietary habits,inadequate understanding of the disease,and poor disease management compliance.Thus,searching for more targeted nursing intervention models that can enhance patients'self-management abilities and reduce the risk of readmission after CABG surgery is significant.AIM To observe the impact of specialized nursing outpatient case management on patients after CABG surgery.METHODS A total of 103 patients who underwent CABG surgery in our hospital between April 2021 and April 2022 comprised the study sample.The patients were divided into two groups using an odd-even number grouping method.The control group received routine nursing care,while the case management group received specialized nursing outpatient case management.The differences in psychological status,adherence to medical treatment,self-care ability,knowledge mastery,quality of life scores,and the occurrence rate of MACE were compared between the two groups.RESULTS After the intervention,the case management group had lower scores on the selfrating depression scale and self-rating anxiety scale and lower MACE rate,as well as higher scores for adherence to a healthy diet,medication adherence,good lifestyle habits,regular exercise,and timely follow-up,higher scores on the Coronary Heart Disease Self-Management Scale,higher scores for managing adverse habits,symptoms,emotional cognition,emergency response,disease knowledge,general lifestyle,and treatment adherence,higher scores for understanding coronary heart disease,recognizing the importance of medication adherence,understanding selfcare points after CABG surgery,and being aware of post-CABG precautions,higher scores for physical well-being,disease condition,general health,social-psychological well-being,and work-related aspects(P<0.05).CONCLUSION Specialized nursing outpatient case management can enhance patient adherence to medical treatment,knowledge mastery,psychological well-being,and overall quality of life in patients after CABG surgery.展开更多
[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extra...[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extracted and then concentrated with petroleum ether,ethyl acetate,n-butanol and water,respectively,and the extracts were obtained.The inhibitory effects of the four different fractions on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the median inhibitory concentration(IC 50 value)was calculated.[Results]The four fractions inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol fraction had the best anti-tumor activity.The IC 50 values of the n-butanol fraction on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.08,1.58 and 0.12 mg/mL,respectively.[Conclusions]Petroleum ether,ethyl acetate,n-butanol and water fractions from the ethanol extract of B.officinalis Maxim.had certain anti-tumor effects,and the n-butanol fraction had the best anti-tumor activity.展开更多
Glycolipids are lipid compounds,which are a type of amphiphilic molecules containing glycosyl ligands.This experiment studied the efficacy of glycolipids on acne skin care from the aspects of antibacterial,anti-inflam...Glycolipids are lipid compounds,which are a type of amphiphilic molecules containing glycosyl ligands.This experiment studied the efficacy of glycolipids on acne skin care from the aspects of antibacterial,anti-inflammatory,anti-allergic,oil-control,soothing and repair.Research results show that glycolipids have excellent antibacterial properties against P.acnes;when the dosage of glycolipids reaches 10μg/mL,the inhibition rate of glycolipids on lipid synthesis in SZ95 cells can reach 20%;glycolipids can induce LPS induction RAW264.7 cells have the inhibitory effect on the release of inflammatory factors IL-6 and NO;when the glycolipids concentration is 15 mg/mL,the inhibition rate of glycolipids on hyaluronidase reaches 45.8%;when the glycolipids concentration is 25μg/mL,the inhibition rate on calcium ion concentration reaches 45.3%;glycolipids have a significant promoting effect on wound healing.Furthermore,human efficacy evaluation shows that glycolipids products have comprehensive care effects on acne skin.This study will help further promote the application of glycolipids in cosmetic products,especially in skin care products for acne skin.展开更多
Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducin...Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.展开更多
Caffeine is considered as one of the most important bioactive components in the popular plant beverages tea,cacao,and coffee,but as a wide-spread plant secondary metabolite its biosynthetic regulation at transcription...Caffeine is considered as one of the most important bioactive components in the popular plant beverages tea,cacao,and coffee,but as a wide-spread plant secondary metabolite its biosynthetic regulation at transcription level remains largely unclear.Here,we report a novel transcription factor Camellia sinensis Senescnece 40(CsS40)as a caffeine biosynthesis regulator,which was discovered during screening a yeast expression library constructed from tea leaf cDNAs for activation of tea caffeine synthase(TCS1)promoter.Besides multiple hits of the non-self-activation CsS40 clones that bound to and activated TCS1 promoter in yeast-one-hybrid assays,a split-luciferase complementation assay demonstrated that CsS40 acts as a transcription factor to activate the CsTCS1 gene and EMSA assay also demonstrated that CsS40 bound to the TCS1 gene promoter.Consistently,immunofluorescence data indicated that CsS40-GFP fusion was localized in the nuclei of tobacco epidermal cells.The expression pattern of CsS40 in‘Fuding Dabai’developing leaves was opposite to that of TCS1;and knockdown and overexpression of CsS40 in tea leaf calli significantly increased and decreased TCS1 expression levels,respectively.The expression levels of CsS40 were also negatively correlated to caffeine accumulation in developing leaves and transgenic calli of‘Fuding Dabai’.Furthermore,overexpression of CsS40 reduced the accumulation of xanthine and hypoxanthine in tobacco plants,meanwhile,increased their susceptibility to aging.CsS40 expression in tea leaves was also induced by senescence-promoting hormones and environmental factors.Taken together,we showed that a novel senescence-related factor CsS40 negatively regulates TCS1 and represses caffeine accumulation in tea cultivar‘Fuding Dabai’.The study provides new insights into caffeine biosynthesis regulation by a plant-specific senescence regulator in tea plants in connection to leaf senescence and hormone signaling.展开更多
Slit-Robo GTPase-activating protein 2(SRGAP2) plays important roles in axon guidance, neuronal migration, synapse formation, and nerve regeneration. However, the role of SRGAP2 in neuroretinal degenerative disease rem...Slit-Robo GTPase-activating protein 2(SRGAP2) plays important roles in axon guidance, neuronal migration, synapse formation, and nerve regeneration. However, the role of SRGAP2 in neuroretinal degenerative disease remains unclear. In this study, we found that SRGAP2 protein was first expressed in the retina of normal mice at the embryonic stage and was mainly located in the mature retinal ganglion cell layer and the inner nuclear layer. SRGAP2 protein in the retina and optic nerve increased after optic nerve crush. Then, we established a heterozygous knockout(Srgap2+/–) mouse model of optic nerve crush and found that Srgap2 suppression increased retinal ganglion cell survival, lowered intraocular pressure, inhibited glial cell activation, and partially restored retinal function. In vitro experiments showed that Srgap2 suppression activated the mammalian target of rapamycin signaling pathway. RNA sequencing results showed that the expression of small heat shock protein genes(Cryaa, Cryba4, and Crygs) related to optic nerve injury were upregulated in the retina of Srgap2+/– mice. These results suggest that Srgap2 suppression reduced the robust activation of glial cells, activated the mammalian target of rapamycin signaling pathway related to nerve protein, increased the expression of small heat shock protein genes, inhibited the degeneration of retinal ganglion cells, and partially restored optic nerve function.展开更多
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis...Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening.展开更多
Docosahexaenoic acid(DHA;22n-6)possesses multiple biological functions, including antioxidant activity and ameliorating hypertriglyceridemia. However, the application of DHA has been limited due to poor aqueous solubi...Docosahexaenoic acid(DHA;22n-6)possesses multiple biological functions, including antioxidant activity and ameliorating hypertriglyceridemia. However, the application of DHA has been limited due to poor aqueous solubility and susceptible to oxidation. Here, ovalbumin(O), myosin(M), 7S soy globulin(S), and β-lactoglobulin(β), hydrolyzed by chymotrypsin, self-assembled into micelles, respectively. Adding incremental DHA to micelles caused endogenous fluorescence quenching of O, M, S, and β micelles, implying successful incorporation of DHA into hydrophobic cores of micelles(O(DHA), M(DHA), S(DHA), and β(DHA)). The results showed that micelles provided spatial stability and improved solubility, and stability against thermal and ultraviolet(UV)light for DHA. The uptake of DHA from M(DHA), β(DHA), O(DHA), and S(DHA)was 3.27-, 3.91-, 2.7-, and 3.95-fold higher, respectively, than that of DHA by Caco-2 cells. Encapsulation in micelles increased DHA aqueous solubility and uptake, which enhanced cellular endogenous antioxidant defense. Meanwhile, increased uptake of DHA was verified by HepG2 cells, and O, M, S, and β micelles were proven to increase DHA uptake to reduce lipid deposition. Our findings strongly support the possibility that O, M, S, and β micelles can be regarded as a carrier for loading DHA.展开更多
Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in ...Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries.展开更多
[Objectives]This study was conducted to explore the quality control method and establish the quality standard of Zhuang medicine Buddlejae Flos.[Methods]The microscopic identification method was adopted to identify th...[Objectives]This study was conducted to explore the quality control method and establish the quality standard of Zhuang medicine Buddlejae Flos.[Methods]The microscopic identification method was adopted to identify the characters and microscopic characteristics of dried Buddlejae Flos in combination with traditional experience.The moisture,ash,acid-insoluble components and extracts of Buddlejae Flos were determined with reference to general rules of Chinese Pharmacopoeia(2015 edition).TLC identification was performed.Liquid chromatography-mass spectrometry(LC-MS)was used to determine the contents of linarin and verbascoside in Buddlejae Flos,and gas chromatography-mass spectrometry(GC-MS)was adopted to detect pesticide residues in Buddlejae Flos.Heavy metal elements As,Cd and Pb were detected by inductively coupled plasma mass spectrometry(ICP-MS).[Results]The established method is simple and accurate.Clear spots were observed on the thin layer chromatograms,and the resolution was good.The average value of moisture content was 12.24%;the average value of ash content was 5.1%;the average value of acid-insoluble content was 7.5%;and the average value of extract content was 27.3%.The regression equation of rutin in Buddlejae Flos was y=11.896x-0.0049,R^(2)=0.9996,and the contents of linarin and verbascoside were 5680 and 2080 mg/kg,respectively.No pesticide residues and heavy metals were detected in the medicinal materials of Buddlejae Flos.[Conclusions]This study can provide reference for the quality standard control of Guangxi Zhuang medicine Buddlejae Flos.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.91963201 and 12174163)the 111 Project(Grant No.B20063).
文摘The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金supported by the NSFC Basic Science Center Program for"Multi-scale Problems in Nonlinear Mechanics" (Grant No.11988102)the NSFC (Grant Nos.U2141204,12172367)+2 种基金the Key Research Program of the Chinese Academy of Sciences (Grant No.ZDRW-CN-2021-2-3)the National Key Research and Development Program of China (Grant No.2022YFC3320504-02)the opening project of State Key Laboratory of Explosion Science and Technology (Grant No.KFJJ21-01 and No.KFJJ18-14 M)。
文摘Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL.
基金supported by the Major Special Projects for Green Pest Control,China(110202101028(LS-03),201938,110202201017(LS-01)and 110202001035(LS04))the National Natural Science Foundation of China(31901893)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIP-TRIC04)。
文摘Understanding interactions between viruses and their hosts is conducive to enabling better application of viruses as biocontrol agents.Certain viruses carried by parasitic wasps enhance the parasitic efficiency of wasp-larvae by protecting them against the immune system of their Lepidopteran host.However,the relationship between prey pests and viruses found in predatory natural enemies remains unclear.Herein,we report the interaction between Arma chinensis virus-1(AcV-1),originally isolated from a predatory natural enemy,Arma chinensis(Hemiptera:Pentatomidae),and one of its prey species,Spodoptera frugiperda(Lepidoptera:Noctuidae).The results showed that the AcV-1 virus appeared harmful to the novel host S.frugiperda by inhibiting larval diet consumption and increasing pupal mortality.Meanwhile,sequencing data indicated that the virus altered the gene expression profiles of S.frugiperda.KEGG analysis showed that the proteasome and phagosome pathways related to protein degradation and immune response were significantly enriched.Although the expression levels of digestive enzyme genes did not change significantly,the total protease activity of AcV-1 virus-positive individuals was significantly decreased,suggesting that the virus inhibited diet consumption of S.frugiperda via the down-regulation of digestive enzyme activities.These results indicate that a virus initially isolated in a predatory natural enemy can decrease the fitness of its prey species.The virus was found to impact the host proteasome and phagosome pathways related to protein degradation and immunity,providing a potential mechanism to enhance controlling efficiency.
基金supported by the National Natural Science Foundation of China[No.U21A20334,82373544]Hebei Provincial Department of Science and Technology Centrally Guided Local Development Fund Project[236Z7705G]Occupational health risk assessment and the formulation of national occupational health standards[102393220020090000020].
文摘Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.
基金The National Natural Science Foundation of China under contract Nos 42376236 and 42176226.
文摘Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.
文摘BACKGROUND Breast cancer(BC),a leading malignant disease,affects women all over the world.Cancer associated fibroblasts(CAFs)stimulate epithelial-mesenchymal transition,and induce chemoresistance and immunosuppression.AIM To establish a CAFs-associated prognostic signature to improve BC patient out-come estimation.METHODS We retrieved the transcript profile and clinical data of 1072 BC samples from The Cancer Genome Atlas(TCGA)databases,and 3661 BC samples from the The Gene Expression Omnibus.CAFs and immune cell infiltrations were quantified using CIBERSORT algorithm.CAF-associated gene identification was done by weighted gene co-expression network analysis.A CAF risk signature was established via univariate,least absolute shrinkage and selection operator regression,and mul-tivariate Cox regression analyses.The receiver operating characteristic(ROC)and Kaplan-Meier curves were employed to evaluate the predictability of the model.Subsequently,a nomogram was developed with the risk score and patient clinical signature.Using Spearman's correlations analysis,the relationship between CAF risk score and gene set enrichment scores were examined.Patient samples were collected to validate gene expression by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS Employing an 8-gene(IL18,MYD88,GLIPR1,TNN,BHLHE41,DNAJB5,FKBP14,and XG)signature,we attemp-ted to estimate BC patient prognosis.Based on our analysis,high-risk patients exhibited worse outcomes than low-risk patients.Multivariate analysis revealed the risk score as an independent indicator of BC patient prognosis.ROC analysis exhibited satisfactory nomogram predictability.The area under the curve showed 0.805 at 3 years,and 0.801 at 5 years in the TCGA cohort.We also demonstrated that a reduced CAF risk score was strongly associated with enhanced chemotherapeutic outcomes.CAF risk score was significantly correlated with most hallmark gene sets.Finally,the prognostic signature were further validated by qRT-PCR.CONCLUSION We introduced a newly-discovered CAFs-associated gene signature,which can be employed to estimate BC patient outcomes conveniently and accurately.
文摘BACKGROUND Some patients with coronary atherosclerotic heart disease experience major adverse cardiac events(MACE)and require readmission after Coronary Artery Bypass Grafting(CABG)surgery.This is often attributed to patients'unhealthy lifestyles and dietary habits,inadequate understanding of the disease,and poor disease management compliance.Thus,searching for more targeted nursing intervention models that can enhance patients'self-management abilities and reduce the risk of readmission after CABG surgery is significant.AIM To observe the impact of specialized nursing outpatient case management on patients after CABG surgery.METHODS A total of 103 patients who underwent CABG surgery in our hospital between April 2021 and April 2022 comprised the study sample.The patients were divided into two groups using an odd-even number grouping method.The control group received routine nursing care,while the case management group received specialized nursing outpatient case management.The differences in psychological status,adherence to medical treatment,self-care ability,knowledge mastery,quality of life scores,and the occurrence rate of MACE were compared between the two groups.RESULTS After the intervention,the case management group had lower scores on the selfrating depression scale and self-rating anxiety scale and lower MACE rate,as well as higher scores for adherence to a healthy diet,medication adherence,good lifestyle habits,regular exercise,and timely follow-up,higher scores on the Coronary Heart Disease Self-Management Scale,higher scores for managing adverse habits,symptoms,emotional cognition,emergency response,disease knowledge,general lifestyle,and treatment adherence,higher scores for understanding coronary heart disease,recognizing the importance of medication adherence,understanding selfcare points after CABG surgery,and being aware of post-CABG precautions,higher scores for physical well-being,disease condition,general health,social-psychological well-being,and work-related aspects(P<0.05).CONCLUSION Specialized nursing outpatient case management can enhance patient adherence to medical treatment,knowledge mastery,psychological well-being,and overall quality of life in patients after CABG surgery.
基金Supported by Guangxi Key R&D Project(GuiKeAB18221095)Baise Scientific Research and Technology Development Plan of Baise City(BaiKe20211810)+1 种基金Open Project of Scientific Research in Guangxi Key Laboratory of Molecular Pathology of Hepatobiliary Diseases(GXZDSYS-005)Research Project of High-level Talents in Youjiang Medical University for Nationalities(01002018079).
文摘[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extracted and then concentrated with petroleum ether,ethyl acetate,n-butanol and water,respectively,and the extracts were obtained.The inhibitory effects of the four different fractions on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the median inhibitory concentration(IC 50 value)was calculated.[Results]The four fractions inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol fraction had the best anti-tumor activity.The IC 50 values of the n-butanol fraction on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.08,1.58 and 0.12 mg/mL,respectively.[Conclusions]Petroleum ether,ethyl acetate,n-butanol and water fractions from the ethanol extract of B.officinalis Maxim.had certain anti-tumor effects,and the n-butanol fraction had the best anti-tumor activity.
文摘Glycolipids are lipid compounds,which are a type of amphiphilic molecules containing glycosyl ligands.This experiment studied the efficacy of glycolipids on acne skin care from the aspects of antibacterial,anti-inflammatory,anti-allergic,oil-control,soothing and repair.Research results show that glycolipids have excellent antibacterial properties against P.acnes;when the dosage of glycolipids reaches 10μg/mL,the inhibition rate of glycolipids on lipid synthesis in SZ95 cells can reach 20%;glycolipids can induce LPS induction RAW264.7 cells have the inhibitory effect on the release of inflammatory factors IL-6 and NO;when the glycolipids concentration is 15 mg/mL,the inhibition rate of glycolipids on hyaluronidase reaches 45.8%;when the glycolipids concentration is 25μg/mL,the inhibition rate on calcium ion concentration reaches 45.3%;glycolipids have a significant promoting effect on wound healing.Furthermore,human efficacy evaluation shows that glycolipids products have comprehensive care effects on acne skin.This study will help further promote the application of glycolipids in cosmetic products,especially in skin care products for acne skin.
基金the support from the Guangdong Basic and Applied Basic Research Foundation (2020A1515011376)the National Natural Science Foundation of China (31601397)+2 种基金the Innovative Leading Talents Project of Guangzhou Development ZoneGuangzhou Innovation Leading Talent Projectthe 111 Project (B17018)。
文摘Polyphenol-rich foods have been shown to be good for cancer prevention as powerful antioxidants. In this study, the mechanisms of wild pink bayberry free phenolic extract(WPBFE)inhibiting the proliferation and inducing apoptotic of MDA-MB-231 breast cancer cells was examined. The main phenolic acids and flavonols in WPBFE were gallic acid((18.83 ± 0.44)μg/g FW)and myricetin((1.52 ± 0.05)μg/g FW), respectively. The maximum inhibition rate of WPBFE at non-cytotoxicity dose(below 80 mg/mL)was 81%. Western blotting analysis showed that WPBFE could cause the arrest of cell cycle in G0/G1 phase by down-regulating expression levels of PCNA, CDK4, cyclin D1 and up-regulating the expression level of p21. Meanwhile, WPBFE induced apoptosis through initiating the mitochondrial death pathway by up-regulating cleaved caspase-3 and enhancing the ratio of Bax/Bcl-2, with the maximum expression levels of 1.29 and 2.03 folds that of control group, respectively. Further study of the upstream protein, we found that WPBFE down-regulated TRAF2, while upregulated p-ASK1, p-p38 and p-p53. Furthermore, WPBFE could down-regulate the expression of p-PI3K and p-Akt. These observations indicated that WPBFE might play an anticancer role through regulating the p38 MAPK together with PI3K/Akt pathway.
基金supported by the National Natural Science Foundation of China(3226180451,3226180488)Guizhou Province Outstanding Young Scientific and Technological Talent Cultivation Project(Qiankehe PlatformTalent[2019]5651)Guizhou Province Science and Technology Planning Project(Qiankehe Support[2021]General 111).
文摘Caffeine is considered as one of the most important bioactive components in the popular plant beverages tea,cacao,and coffee,but as a wide-spread plant secondary metabolite its biosynthetic regulation at transcription level remains largely unclear.Here,we report a novel transcription factor Camellia sinensis Senescnece 40(CsS40)as a caffeine biosynthesis regulator,which was discovered during screening a yeast expression library constructed from tea leaf cDNAs for activation of tea caffeine synthase(TCS1)promoter.Besides multiple hits of the non-self-activation CsS40 clones that bound to and activated TCS1 promoter in yeast-one-hybrid assays,a split-luciferase complementation assay demonstrated that CsS40 acts as a transcription factor to activate the CsTCS1 gene and EMSA assay also demonstrated that CsS40 bound to the TCS1 gene promoter.Consistently,immunofluorescence data indicated that CsS40-GFP fusion was localized in the nuclei of tobacco epidermal cells.The expression pattern of CsS40 in‘Fuding Dabai’developing leaves was opposite to that of TCS1;and knockdown and overexpression of CsS40 in tea leaf calli significantly increased and decreased TCS1 expression levels,respectively.The expression levels of CsS40 were also negatively correlated to caffeine accumulation in developing leaves and transgenic calli of‘Fuding Dabai’.Furthermore,overexpression of CsS40 reduced the accumulation of xanthine and hypoxanthine in tobacco plants,meanwhile,increased their susceptibility to aging.CsS40 expression in tea leaves was also induced by senescence-promoting hormones and environmental factors.Taken together,we showed that a novel senescence-related factor CsS40 negatively regulates TCS1 and represses caffeine accumulation in tea cultivar‘Fuding Dabai’.The study provides new insights into caffeine biosynthesis regulation by a plant-specific senescence regulator in tea plants in connection to leaf senescence and hormone signaling.
基金supported by the Notional Natural Science Foundation of China,Nos.81770918 (to ZLC),31871383 (to TL)the Natural Science Foundation of Zhejiang Province,No.LY16H120006 (to ZLC)the Departmental Funds from Wenzhou Medical University,No.89214018 (to ZLC)。
文摘Slit-Robo GTPase-activating protein 2(SRGAP2) plays important roles in axon guidance, neuronal migration, synapse formation, and nerve regeneration. However, the role of SRGAP2 in neuroretinal degenerative disease remains unclear. In this study, we found that SRGAP2 protein was first expressed in the retina of normal mice at the embryonic stage and was mainly located in the mature retinal ganglion cell layer and the inner nuclear layer. SRGAP2 protein in the retina and optic nerve increased after optic nerve crush. Then, we established a heterozygous knockout(Srgap2+/–) mouse model of optic nerve crush and found that Srgap2 suppression increased retinal ganglion cell survival, lowered intraocular pressure, inhibited glial cell activation, and partially restored retinal function. In vitro experiments showed that Srgap2 suppression activated the mammalian target of rapamycin signaling pathway. RNA sequencing results showed that the expression of small heat shock protein genes(Cryaa, Cryba4, and Crygs) related to optic nerve injury were upregulated in the retina of Srgap2+/– mice. These results suggest that Srgap2 suppression reduced the robust activation of glial cells, activated the mammalian target of rapamycin signaling pathway related to nerve protein, increased the expression of small heat shock protein genes, inhibited the degeneration of retinal ganglion cells, and partially restored optic nerve function.
基金supported by grants from the National Natural Science Foundation of China(Grant No.32002006)China Postdoctoral Science Foundation(Grant No.2020M680984).
文摘Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening.
基金supported by the National Natural Science Foundation of China (31871831)Shenyang Science and technology innovation platform project (21-103-0-14,21-104-0-28)。
文摘Docosahexaenoic acid(DHA;22n-6)possesses multiple biological functions, including antioxidant activity and ameliorating hypertriglyceridemia. However, the application of DHA has been limited due to poor aqueous solubility and susceptible to oxidation. Here, ovalbumin(O), myosin(M), 7S soy globulin(S), and β-lactoglobulin(β), hydrolyzed by chymotrypsin, self-assembled into micelles, respectively. Adding incremental DHA to micelles caused endogenous fluorescence quenching of O, M, S, and β micelles, implying successful incorporation of DHA into hydrophobic cores of micelles(O(DHA), M(DHA), S(DHA), and β(DHA)). The results showed that micelles provided spatial stability and improved solubility, and stability against thermal and ultraviolet(UV)light for DHA. The uptake of DHA from M(DHA), β(DHA), O(DHA), and S(DHA)was 3.27-, 3.91-, 2.7-, and 3.95-fold higher, respectively, than that of DHA by Caco-2 cells. Encapsulation in micelles increased DHA aqueous solubility and uptake, which enhanced cellular endogenous antioxidant defense. Meanwhile, increased uptake of DHA was verified by HepG2 cells, and O, M, S, and β micelles were proven to increase DHA uptake to reduce lipid deposition. Our findings strongly support the possibility that O, M, S, and β micelles can be regarded as a carrier for loading DHA.
基金supported by Shandong Natural Science Founda‐tion[Grant No.ZR2023MD079]Shandong Province Social Science Planning Research Project[Grant No.22CKRJ04]+2 种基金Taishan Scholar Project[Grant No.tsqn202103010]Department of Science and Tech‐nology of Shandong Province[Grant No.2021SFGC0904-05]Zaozhuang Science and Technology Bureau[Grant No.2021GH22].
文摘Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries.
基金Supported by Guangxi Key R&D Program(GK AB18221095)Guangxi Key Laboratory of Molecular Pathology of Hepatobiliary Diseases(GXZDSYS-005)+1 种基金Baise Scientific Research and Technological Development Program in 2021(BK 20211810)High-level Talent Scientific Research Project of Youjiang Medical University for Nationalities(01002018079)。
文摘[Objectives]This study was conducted to explore the quality control method and establish the quality standard of Zhuang medicine Buddlejae Flos.[Methods]The microscopic identification method was adopted to identify the characters and microscopic characteristics of dried Buddlejae Flos in combination with traditional experience.The moisture,ash,acid-insoluble components and extracts of Buddlejae Flos were determined with reference to general rules of Chinese Pharmacopoeia(2015 edition).TLC identification was performed.Liquid chromatography-mass spectrometry(LC-MS)was used to determine the contents of linarin and verbascoside in Buddlejae Flos,and gas chromatography-mass spectrometry(GC-MS)was adopted to detect pesticide residues in Buddlejae Flos.Heavy metal elements As,Cd and Pb were detected by inductively coupled plasma mass spectrometry(ICP-MS).[Results]The established method is simple and accurate.Clear spots were observed on the thin layer chromatograms,and the resolution was good.The average value of moisture content was 12.24%;the average value of ash content was 5.1%;the average value of acid-insoluble content was 7.5%;and the average value of extract content was 27.3%.The regression equation of rutin in Buddlejae Flos was y=11.896x-0.0049,R^(2)=0.9996,and the contents of linarin and verbascoside were 5680 and 2080 mg/kg,respectively.No pesticide residues and heavy metals were detected in the medicinal materials of Buddlejae Flos.[Conclusions]This study can provide reference for the quality standard control of Guangxi Zhuang medicine Buddlejae Flos.