The quality upgrading and deashing of inferior coal by chemical method still faces great challenges.The dangers of strong acid,strong alkali,waste water and exhaust gas as well as high cost limit its industrial produc...The quality upgrading and deashing of inferior coal by chemical method still faces great challenges.The dangers of strong acid,strong alkali,waste water and exhaust gas as well as high cost limit its industrial production.This paper systematically investigates the ash reduction and desilicification of two typical inferior coal utilizing ammonium fluoride roasting method.Under the optimal conditions,for fat coal and gas coal,the deashing rates are 69.02%and 54.13%,and the desilicification rates are 92.64%and 90.27%,respectively.The molar dosage of ammonium fluoride remains consistent for both coals;however,the gas coal,characterized by a lower ash and silica content(less than half that of the fat coal),achieves optimum deashing effect at a reduced time and temperature.The majority of silicon in coal transforms into gaseous ammonium fluorosilicate,subsequently preparing nanoscale amorphous silica with a purity of 99.90%through ammonia precipitation.Most of the fluorine in deashed coal are assigned in inorganic minerals,suggesting the possibility of further fluorine and ash removal via flotation.This research provides a green and facile route to deash inferior coal and produce nano-scale white carbon black simultaneously.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available form...Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available formulation(Ocufen^(R))limits the full potential of its therapeutic activity,as the(S)-enantiomer is responsible for the desired antiinflammatory effects.Additionally,the limited corneal permeability of FB significantly restricts its bioavailability.In this study,we successfully separated the chiral isomers of FB to obtain the highly active(S)-FB.Subsequently,utilizing ion-pairing technology,we coupled(S)-FB with various counter-ions,such as sodium,diethylamine,trimethamine(TMA),and l-arginine,to enhance its ocular bioavailability.A comprehensive evaluation encompassed balanced solubility,octanol-water partition coefficient,corneal permeability,ocular pharmacokinetics,tissue distribution,and in vivo ocular anti-inflammatory activity of each chiral isomer salt.Among the various formulations,S-FBTMA exhibited superior water solubility(about 1–12 mg/ml),lipid solubility(1<lgP_(ow)<3)and corneal permeability.In comparison to Ocufen^(R),S-FBTMA demonstrated significantly higher in vivo antiinflammatory activity and lower ocular irritability(such as conjunctival congestion and tingling).The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.展开更多
The population of the green sea turtle(Chelonia mydas)is under decline,threatened by bycatch and illegal acquisition despite worldwide protection efforts.However,the confiscation of illegally acquired sea turtles coul...The population of the green sea turtle(Chelonia mydas)is under decline,threatened by bycatch and illegal acquisition despite worldwide protection efforts.However,the confiscation of illegally acquired sea turtles could aid in tracking their origin and movement patterns,crucial for effective conservation strategies.Combining satellite tracking and genetic analysis offers an opportunity to investigate the relationship between the origins and migration directions of green sea turtles in the western Pacific.Here,we applied two methods to investigate the spatial ecology of 18 green turtles caught as bycatch in the South China Sea.Our results revealed the genetic origins and diverse movements of the turtles.Bayesian Mixed Stock Analysis(MSA)suggested that these turtles originated from the rookery of the Xisha Islands(49.6%),central Ryukyu(24.6%),NE Borneo(8%),and the Sulu Sea(5.2%),with other rookeries in meagre proportions(<2%each).Satellite tracking showed the ranges of their travel were smaller than the whole contributed rookery range,but diverse.The haplotype diversity of these turtles is high,and CmP19 stands out as both the most frequent and the most diverse haplotype in terms of swimming destinations.These results indicate that the South China Sea is likely an important transportation hub and mating spot for green turtles.Our findings provided evidence for the rehabilitation of these green turtles in the wild and illustrated the complexity of movement during the green turtle’s life history,and the“mixed backgrounds”of the green turtles also highlight the need for joint conservation efforts of neighbouring countries in the South China Sea.展开更多
A numerical study of the diamagnetic drift effect on the nonlinear interaction between multi-helicity neoclassical tearing modes(NTMs) is carried out using a set of four-field equations including two-fluid effects.The...A numerical study of the diamagnetic drift effect on the nonlinear interaction between multi-helicity neoclassical tearing modes(NTMs) is carried out using a set of four-field equations including two-fluid effects.The results show that,in contrast to the single-fluid case,5/3 NTM cannot be completely suppressed by 3/2 NTM with diamagnetic drift flow.Both modes exhibit oscillation and coexist in the saturated phase.To better understand the effect of the diamagnetic drift flow on multiple-helicity NTMs,the influence of typical relevant parameters is investigated.It is found that the average saturated magnetic island width increases with increasing bootstrap current fraction f_(b) but decreases with the ion skin depth δ.In addition,as the ratio of parallel to perpendicular transport coefficients χ_(‖)/χ_(⊥) increases,the average saturated magnetic island widths of the 3/2 and 5/3 NTMs increase.The underlying mechanisms behind these observations are discussed in detail.展开更多
The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of ...The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.展开更多
Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it ...Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.展开更多
Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the syste...Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.展开更多
Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it canno...Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.展开更多
BACKGROUND Chronic renal failure(CRF) patients are predisposed to arrhythmias, while the detailed mechanisms are unclear. We hypothesized the chronic inflammatory state of CRF patients may lead to cardiac sympathetic ...BACKGROUND Chronic renal failure(CRF) patients are predisposed to arrhythmias, while the detailed mechanisms are unclear. We hypothesized the chronic inflammatory state of CRF patients may lead to cardiac sympathetic remodeling, increasing the incidence of ventricular arrhythmia(VA) and sudden cardiac death. And explored the role of atorvastatin and etanercept in this process.METHODS A total of 48 rats were randomly divided into sham operation group(Sham group), CRF group, CRF + atorvastatin group(CRF + statin group), and CRF + etanercept group(CRF + rhTNFR-Fcgroup). Sympathetic nerve remodeling was assessed by immunofluorescence of growth-associated protein 43(GAP-43) and tyrosine hydroxylase positive area fraction. Electrophysiological testing was performed to assess the incidence of VA by assessing the ventricular effective refractory period and ventricular fibrillation threshold. The levels of tumor necrosis factor-alpha(TNF-α) and interleukin-1beta were determined by Western blotting and enzyme-linked immunosorbent assay.RESULTS Echocardiogram showed that compared with the Sham group, left ventricular end-systolic diameter and ventricular weight/body weight ratio were significantly higher in the CRF group. Hematoxylin-eosin and Masson staining indicated that myocardial fibers were broken, disordered, and fibrotic in the CRF group. Western blotting, enzyme-linked immunosorbent assay,immunofluorescence and electrophysiological examination suggested that compared with the Sham group, GAP-43 and TNF-α proteins were significantly upregulated, GAP-43 and tyrosine hydroxylase positive nerve fiber area was increased, and ventricular fibrillation threshold was significantly decreased in the CRF group. The above effects were inhibited in the CRF + statin group and the CRF + rhTNFR-Fcgroup.CONCLUSIONS In CRF rats, TNF-α was upregulated, cardiac sympathetic remodeling was more severe, and the nephrogenic cardiac sympathetic remodeling existed. Atorvastatin and etanercept could downregulate the expression of TNF-α or inhibit its activity, thus inhibited the above effects, and reduced the occurrence of VA and sudden cardiac death.展开更多
A 77-year-old female presented with shortness of breath and tightness of chest was admitted.Her past medical history included hypertension and she has been taking nifedipine regularly.Two years before,she was diagnose...A 77-year-old female presented with shortness of breath and tightness of chest was admitted.Her past medical history included hypertension and she has been taking nifedipine regularly.Two years before,she was diagnosed with pericardial effusion(Figure 1)and had pericardiocentesis drainage.On physical examination,her blood pressure was 151/100 mm-Hg and her pulse rate was 91 beats/min.展开更多
Protein C(PC)is a key component of the vitamin K-dependent coagulation pathway.It exerts anticoagulant effects by inactivating factors V and VIII.Acquired or inherited PC deficiency results in a prothrombotic state,wi...Protein C(PC)is a key component of the vitamin K-dependent coagulation pathway.It exerts anticoagulant effects by inactivating factors V and VIII.Acquired or inherited PC deficiency results in a prothrombotic state,with presentations varying from asymptomatic to venous thromboembolism.However,there has been an increasing number of reports linking PC deficiency to arterial thromboembolic events,such as myocardial infarction and ischemic stroke.This editorial focuses on the association between PC deficiency and thromboembolism,which may provide some insights for treatment strategy and scientific research.展开更多
Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position(or spatial coordinates)of the joints of the human body in a given image or video.It is widely u...Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position(or spatial coordinates)of the joints of the human body in a given image or video.It is widely used in motion analysis,medical evaluation,and behavior monitoring.In this paper,the authors propose a method for multi-view human pose estimation.Two image sensors were placed orthogonally with respect to each other to capture the pose of the subject as they moved,and this yielded accurate and comprehensive results of three-dimensional(3D)motion reconstruction that helped capture their multi-directional poses.Following this,we propose a method based on 3D pose estimation to assess the similarity of the features of motion of patients with motor dysfunction by comparing differences between their range of motion and that of normal subjects.We converted these differences into Fugl–Meyer assessment(FMA)scores in order to quantify them.Finally,we implemented the proposed method in the Unity framework,and built a Virtual Reality platform that provides users with human–computer interaction to make the task more enjoyable for them and ensure their active participation in the assessment process.The goal is to provide a suitable means of assessing movement disorders without requiring the immediate supervision of a physician.展开更多
Diabetes mellitus is a prevalent disorder with multi-system manifestations,causing a significant burden in terms of disability and deaths globally.Angio-tensin receptor-neprilysin inhibitor(ARNI)belongs to a class of ...Diabetes mellitus is a prevalent disorder with multi-system manifestations,causing a significant burden in terms of disability and deaths globally.Angio-tensin receptor-neprilysin inhibitor(ARNI)belongs to a class of medications for treating heart failure,with the benefits of reducing hospitalization rates and mortality.This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications,discussing possible physiological and molecular mechanisms,with insights for future applications.展开更多
High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pret...High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.展开更多
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform...The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.展开更多
Disorders in glucose metabolism can be divided into three separate but interrelated domains,namely hyperglycemia,hypoglycemia,and glycemic variability.Intensive glycemic control in patients with diabetes might increas...Disorders in glucose metabolism can be divided into three separate but interrelated domains,namely hyperglycemia,hypoglycemia,and glycemic variability.Intensive glycemic control in patients with diabetes might increase the risk of hypoglycemic incidents and glucose fluctuations.These three dysglycemic states occur not only amongst patients with diabetes,but are frequently present in other clinical settings,such as during critically ill.A growing body of evidence has focused on the relationships between these dysglycemic domains with cardiac arrhythmias,including supraventricular arrhythmias(primarily atrial fibrillation),ventricular arrhythmias(malignant ventricular arrhythmias and QT interval prolongation),and bradyarrhythmias(bradycardia and heart block).Different mechanisms by which these dysglycemic states might provoke cardiac arrhythmias have been identified in experimental studies.A customized glycemic control strategy to minimize the risk of hyperglycemia,hypoglycemia and glucose variability is of the utmost importance in order to mitigate the risk of cardiac arrhythmias.展开更多
Numerical research is conducted to investigate the effects of plasma boundary shape on the tearing mode triggering explosive bursts in toroidal tokamak plasmas.In this work,m/n=2/1 mode is responsible for the triggeri...Numerical research is conducted to investigate the effects of plasma boundary shape on the tearing mode triggering explosive bursts in toroidal tokamak plasmas.In this work,m/n=2/1 mode is responsible for the triggering of the explosive burst.Plasma boundary shape can be adjusted via the adjustment of the parameters triangularityδand elongationκ.The investigations are conducted both under lowβ(close to zero)and under finiteβregimes.In the lowβregime,triangularity and elongation both have stabilizing effect on the explosive burst,and the stabilizing effect of elongation is stronger.Under a large elongation(κ=2.0),the elongation effect can evidently enhance the stabilizing effect in a positive triangularity regime,but barely affects the stabilizing effect in a negative triangularity regime.In the finiteβregime,the explosive burst is delayed in comparison with that in the lowβregime.Similar to the lowβcases,the effects of triangularity and elongation both are stabilizing.Under a large elongation(κ=2.0),the elongation effect can evidently enhance the stabilizing effect on the explosive burst in a positive triangularity regime,but impair the stabilizing effect in a negative triangularity regime.The explosive burst disappears in the large triangularity case(δ=0.5),indicating that the explosive burst can be effectively prevented in experiments via carefully adjusting plasma boundary shape.Moreover,strong magnetic stochasticity appears in the negative triangularity case during the nonlinear phase.展开更多
文摘The quality upgrading and deashing of inferior coal by chemical method still faces great challenges.The dangers of strong acid,strong alkali,waste water and exhaust gas as well as high cost limit its industrial production.This paper systematically investigates the ash reduction and desilicification of two typical inferior coal utilizing ammonium fluoride roasting method.Under the optimal conditions,for fat coal and gas coal,the deashing rates are 69.02%and 54.13%,and the desilicification rates are 92.64%and 90.27%,respectively.The molar dosage of ammonium fluoride remains consistent for both coals;however,the gas coal,characterized by a lower ash and silica content(less than half that of the fat coal),achieves optimum deashing effect at a reduced time and temperature.The majority of silicon in coal transforms into gaseous ammonium fluorosilicate,subsequently preparing nanoscale amorphous silica with a purity of 99.90%through ammonia precipitation.Most of the fluorine in deashed coal are assigned in inorganic minerals,suggesting the possibility of further fluorine and ash removal via flotation.This research provides a green and facile route to deash inferior coal and produce nano-scale white carbon black simultaneously.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金financially supported by the National Postdoctoral Foundation of China(No.2023M730375)Liaoning Province Department of Education Project(No.LJKMZ20221365)the State Key Laboratory of Natural and Biomimetic Drugs(No.K202215)。
文摘Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available formulation(Ocufen^(R))limits the full potential of its therapeutic activity,as the(S)-enantiomer is responsible for the desired antiinflammatory effects.Additionally,the limited corneal permeability of FB significantly restricts its bioavailability.In this study,we successfully separated the chiral isomers of FB to obtain the highly active(S)-FB.Subsequently,utilizing ion-pairing technology,we coupled(S)-FB with various counter-ions,such as sodium,diethylamine,trimethamine(TMA),and l-arginine,to enhance its ocular bioavailability.A comprehensive evaluation encompassed balanced solubility,octanol-water partition coefficient,corneal permeability,ocular pharmacokinetics,tissue distribution,and in vivo ocular anti-inflammatory activity of each chiral isomer salt.Among the various formulations,S-FBTMA exhibited superior water solubility(about 1–12 mg/ml),lipid solubility(1<lgP_(ow)<3)and corneal permeability.In comparison to Ocufen^(R),S-FBTMA demonstrated significantly higher in vivo antiinflammatory activity and lower ocular irritability(such as conjunctival congestion and tingling).The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.
基金supported by the Society of Entrepreneurs and Ecology,the Aquatic Wildlife Conservation Branch of the China Wildlife Conservation Association,and Ocean Park Hong Kong.
文摘The population of the green sea turtle(Chelonia mydas)is under decline,threatened by bycatch and illegal acquisition despite worldwide protection efforts.However,the confiscation of illegally acquired sea turtles could aid in tracking their origin and movement patterns,crucial for effective conservation strategies.Combining satellite tracking and genetic analysis offers an opportunity to investigate the relationship between the origins and migration directions of green sea turtles in the western Pacific.Here,we applied two methods to investigate the spatial ecology of 18 green turtles caught as bycatch in the South China Sea.Our results revealed the genetic origins and diverse movements of the turtles.Bayesian Mixed Stock Analysis(MSA)suggested that these turtles originated from the rookery of the Xisha Islands(49.6%),central Ryukyu(24.6%),NE Borneo(8%),and the Sulu Sea(5.2%),with other rookeries in meagre proportions(<2%each).Satellite tracking showed the ranges of their travel were smaller than the whole contributed rookery range,but diverse.The haplotype diversity of these turtles is high,and CmP19 stands out as both the most frequent and the most diverse haplotype in terms of swimming destinations.These results indicate that the South China Sea is likely an important transportation hub and mating spot for green turtles.Our findings provided evidence for the rehabilitation of these green turtles in the wild and illustrated the complexity of movement during the green turtle’s life history,and the“mixed backgrounds”of the green turtles also highlight the need for joint conservation efforts of neighbouring countries in the South China Sea.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFE03090000)the National Natural Science Foundation of China (Grant Nos. 11925501 and 12075048)the Fundament Research Funds for the Central Universities (Grant No. DUT22ZD215)。
文摘A numerical study of the diamagnetic drift effect on the nonlinear interaction between multi-helicity neoclassical tearing modes(NTMs) is carried out using a set of four-field equations including two-fluid effects.The results show that,in contrast to the single-fluid case,5/3 NTM cannot be completely suppressed by 3/2 NTM with diamagnetic drift flow.Both modes exhibit oscillation and coexist in the saturated phase.To better understand the effect of the diamagnetic drift flow on multiple-helicity NTMs,the influence of typical relevant parameters is investigated.It is found that the average saturated magnetic island width increases with increasing bootstrap current fraction f_(b) but decreases with the ion skin depth δ.In addition,as the ratio of parallel to perpendicular transport coefficients χ_(‖)/χ_(⊥) increases,the average saturated magnetic island widths of the 3/2 and 5/3 NTMs increase.The underlying mechanisms behind these observations are discussed in detail.
基金supported by National Natural Science Foundation of China(No.82173766,82104109)Natural Science Foundation of Liaoning Province(2022-BS158)+1 种基金Liaoning Province Applied Basic Research Program(No.2022JH2/101300097)National Key R&D Program of China(No.2022YFE0111600).
文摘The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.
基金supported by the National Natural Science Foundation of China(Grant No.62071248)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ24A040004)+1 种基金Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Localization phenomenon is an important research field in condensed matter physics.However,due to the complexity and subtlety of disordered systems,new localization phenomena always emerge unexpectedly.For example,it is generally believed that the phase of the hopping term does not affect the localization properties of the system,so the calculation of the phase is often ignored in the study of localization.Here,we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations,such as the inverse participation ratio and multifractal analysis.This phase-induced localization transition provides valuable information for the study of localization physics.
基金This work was supported by the National Natural Science Foundation of China(Grant No.62071248)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20200737)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)+1 种基金the Innovation Research Project of Jiangsu Province(Grant No.JSSCBS20210521)the China Postdoctoral Science Foundation(Grant No.2022M721693)。
文摘Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.
基金supported by the Key Project of Tianjin Natural Science Foundation (No.21JCZDJC01080)the Tianjin Key Medical Discipline (Specialty) (TJYXZDX K-029A)+1 种基金the Academic Backbone of “Clinical Talent Training and Climbing Plan” of Tianjin Medical University and the Tianjin Health Research ProjectScience and Technology Development Fund of Nanjing Medical University (NMUB20210180)。
文摘BACKGROUND Chronic renal failure(CRF) patients are predisposed to arrhythmias, while the detailed mechanisms are unclear. We hypothesized the chronic inflammatory state of CRF patients may lead to cardiac sympathetic remodeling, increasing the incidence of ventricular arrhythmia(VA) and sudden cardiac death. And explored the role of atorvastatin and etanercept in this process.METHODS A total of 48 rats were randomly divided into sham operation group(Sham group), CRF group, CRF + atorvastatin group(CRF + statin group), and CRF + etanercept group(CRF + rhTNFR-Fcgroup). Sympathetic nerve remodeling was assessed by immunofluorescence of growth-associated protein 43(GAP-43) and tyrosine hydroxylase positive area fraction. Electrophysiological testing was performed to assess the incidence of VA by assessing the ventricular effective refractory period and ventricular fibrillation threshold. The levels of tumor necrosis factor-alpha(TNF-α) and interleukin-1beta were determined by Western blotting and enzyme-linked immunosorbent assay.RESULTS Echocardiogram showed that compared with the Sham group, left ventricular end-systolic diameter and ventricular weight/body weight ratio were significantly higher in the CRF group. Hematoxylin-eosin and Masson staining indicated that myocardial fibers were broken, disordered, and fibrotic in the CRF group. Western blotting, enzyme-linked immunosorbent assay,immunofluorescence and electrophysiological examination suggested that compared with the Sham group, GAP-43 and TNF-α proteins were significantly upregulated, GAP-43 and tyrosine hydroxylase positive nerve fiber area was increased, and ventricular fibrillation threshold was significantly decreased in the CRF group. The above effects were inhibited in the CRF + statin group and the CRF + rhTNFR-Fcgroup.CONCLUSIONS In CRF rats, TNF-α was upregulated, cardiac sympathetic remodeling was more severe, and the nephrogenic cardiac sympathetic remodeling existed. Atorvastatin and etanercept could downregulate the expression of TNF-α or inhibit its activity, thus inhibited the above effects, and reduced the occurrence of VA and sudden cardiac death.
基金funded by the Tianjin Natural Science Foundation (No. 21JCYBJC01740 and 21JCYBJC01460)the Tianjin Key Medical Discipline (Specialty) Construction Project+1 种基金the Tianjin Key Medical Discipline (Specialty) Construction Project(TJYXZDXK-029A)Science Foundation of The Tianjin Education Commission (No.2023ZD007)
文摘A 77-year-old female presented with shortness of breath and tightness of chest was admitted.Her past medical history included hypertension and she has been taking nifedipine regularly.Two years before,she was diagnosed with pericardial effusion(Figure 1)and had pericardiocentesis drainage.On physical examination,her blood pressure was 151/100 mm-Hg and her pulse rate was 91 beats/min.
文摘Protein C(PC)is a key component of the vitamin K-dependent coagulation pathway.It exerts anticoagulant effects by inactivating factors V and VIII.Acquired or inherited PC deficiency results in a prothrombotic state,with presentations varying from asymptomatic to venous thromboembolism.However,there has been an increasing number of reports linking PC deficiency to arterial thromboembolic events,such as myocardial infarction and ischemic stroke.This editorial focuses on the association between PC deficiency and thromboembolism,which may provide some insights for treatment strategy and scientific research.
基金This work was supported by grants fromthe Natural Science Foundation of Hebei Province,under Grant No.F2021202021the S&T Program of Hebei,under Grant No.22375001Dthe National Key R&D Program of China,under Grant No.2019YFB1312500.
文摘Human pose estimation is a basic and critical task in the field of computer vision that involves determining the position(or spatial coordinates)of the joints of the human body in a given image or video.It is widely used in motion analysis,medical evaluation,and behavior monitoring.In this paper,the authors propose a method for multi-view human pose estimation.Two image sensors were placed orthogonally with respect to each other to capture the pose of the subject as they moved,and this yielded accurate and comprehensive results of three-dimensional(3D)motion reconstruction that helped capture their multi-directional poses.Following this,we propose a method based on 3D pose estimation to assess the similarity of the features of motion of patients with motor dysfunction by comparing differences between their range of motion and that of normal subjects.We converted these differences into Fugl–Meyer assessment(FMA)scores in order to quantify them.Finally,we implemented the proposed method in the Unity framework,and built a Virtual Reality platform that provides users with human–computer interaction to make the task more enjoyable for them and ensure their active participation in the assessment process.The goal is to provide a suitable means of assessing movement disorders without requiring the immediate supervision of a physician.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-029Athe National Natural Science Foundation of China,No.82370342.
文摘Diabetes mellitus is a prevalent disorder with multi-system manifestations,causing a significant burden in terms of disability and deaths globally.Angio-tensin receptor-neprilysin inhibitor(ARNI)belongs to a class of medications for treating heart failure,with the benefits of reducing hospitalization rates and mortality.This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications,discussing possible physiological and molecular mechanisms,with insights for future applications.
基金supported jointly by the National Natural Science Foundation of China(Nos.61674165,61604167,61574160,61704183,61404159,11604366)the Natural Science Foundation of Jiangsu Province(Nos.BK20170432,BK20160397,BK20140394)+2 种基金the National Key R&D Program of China(No.2016YFB0401803)the Strategic Priority Re-search Program of the Chinese Academy of Science(No.XDA09020401)the support at the Platform for Characterization&Test,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences
文摘High quality gallium oxide(Ga_2O_3) thin films are deposited by remote plasma-enhanced atomic layer deposition(RPEALD) with trimethylgallium(TMG) and oxygen plasma as precursors. By introducing in-situ NH3 plasma pretreatment on the substrates, the deposition rate of Ga_2O_3 films on Si and GaN are remarkably enhanced, reached to 0.53 and 0.46 ?/cycle at 250 °C,respectively. The increasing of deposition rate is attributed to more hydroxyls(–OH) generated on the substrate surfaces after NH3 pretreatment, which has no effect on the stoichiometry and surface morphology of the oxide films, but only modifies the surface states of substrates by enhancing reactive site density. Ga_2O_3 film deposited on GaN wafer is crystallized at 250 °C, with an epitaxial interface between Ga_2O_3 and GaN clearly observed. This is potentially very important for reducing the interface state density through high quality passivation.
基金supported in part by the National Natural Science Foundation of China(J2124006,62076185)。
文摘The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.
基金the National Natural Science Foundation of China,No.81970270,No.81570298,and No.81270245Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-029A.
文摘Disorders in glucose metabolism can be divided into three separate but interrelated domains,namely hyperglycemia,hypoglycemia,and glycemic variability.Intensive glycemic control in patients with diabetes might increase the risk of hypoglycemic incidents and glucose fluctuations.These three dysglycemic states occur not only amongst patients with diabetes,but are frequently present in other clinical settings,such as during critically ill.A growing body of evidence has focused on the relationships between these dysglycemic domains with cardiac arrhythmias,including supraventricular arrhythmias(primarily atrial fibrillation),ventricular arrhythmias(malignant ventricular arrhythmias and QT interval prolongation),and bradyarrhythmias(bradycardia and heart block).Different mechanisms by which these dysglycemic states might provoke cardiac arrhythmias have been identified in experimental studies.A customized glycemic control strategy to minimize the risk of hyperglycemia,hypoglycemia and glucose variability is of the utmost importance in order to mitigate the risk of cardiac arrhythmias.
基金supported by the National Natural Science Foundation of China(Grant Nos.11925501,12105034,and 12205034)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT22ZD215)。
文摘Numerical research is conducted to investigate the effects of plasma boundary shape on the tearing mode triggering explosive bursts in toroidal tokamak plasmas.In this work,m/n=2/1 mode is responsible for the triggering of the explosive burst.Plasma boundary shape can be adjusted via the adjustment of the parameters triangularityδand elongationκ.The investigations are conducted both under lowβ(close to zero)and under finiteβregimes.In the lowβregime,triangularity and elongation both have stabilizing effect on the explosive burst,and the stabilizing effect of elongation is stronger.Under a large elongation(κ=2.0),the elongation effect can evidently enhance the stabilizing effect in a positive triangularity regime,but barely affects the stabilizing effect in a negative triangularity regime.In the finiteβregime,the explosive burst is delayed in comparison with that in the lowβregime.Similar to the lowβcases,the effects of triangularity and elongation both are stabilizing.Under a large elongation(κ=2.0),the elongation effect can evidently enhance the stabilizing effect on the explosive burst in a positive triangularity regime,but impair the stabilizing effect in a negative triangularity regime.The explosive burst disappears in the large triangularity case(δ=0.5),indicating that the explosive burst can be effectively prevented in experiments via carefully adjusting plasma boundary shape.Moreover,strong magnetic stochasticity appears in the negative triangularity case during the nonlinear phase.