The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that ...The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that DMI plays a vital role in vortex core reversal,including reversal current density,reversal velocity and reversal time.Under the influence of DMI,magnetic vortices still reverse polarity through the nucleation and annihilation of vortex and anti-vortex,with some peculiar characteristics.These results open up new possibilities for the application of magnetic vortex-based spin-transfer encryption nano-storage.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774045 and 22078124)the Program for the Development of Science and Technology of Jilin Province,China(Grant No.20210101410JC).
文摘The influence of Dzyaloshinskii-Moriya interaction(DMI)on the vortex reversal driven by an out-of-plane spin-polarized current in an off-centered nanocontact structure is investigated.The simulation results show that DMI plays a vital role in vortex core reversal,including reversal current density,reversal velocity and reversal time.Under the influence of DMI,magnetic vortices still reverse polarity through the nucleation and annihilation of vortex and anti-vortex,with some peculiar characteristics.These results open up new possibilities for the application of magnetic vortex-based spin-transfer encryption nano-storage.