To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.First...To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.Firstly,a dynamic model of disturbance is built by augmenting the integral of the lumped disturbance as a state.Based on it,ILDO is designed by introducing iterative learning structures.Then,comparative analyses of ILDO and traditional disturbance observers are carried out in frequency domain.It demonstrates that ILDO combines the advantages of high accuracy in disturbance estimation and favorable robustness to measurement noise.After that,an ILDO based composite controller is designed to stabilize the spacecraft attitude.Finally,the effectiveness of the proposed control scheme is verified by simulations.展开更多
文摘To realize high-precision attitude stabilization of a flexible spacecraft in the presence of complex disturbances and measurement noises,an iterative learning disturbance observer(ILDO)is presented in this paper.Firstly,a dynamic model of disturbance is built by augmenting the integral of the lumped disturbance as a state.Based on it,ILDO is designed by introducing iterative learning structures.Then,comparative analyses of ILDO and traditional disturbance observers are carried out in frequency domain.It demonstrates that ILDO combines the advantages of high accuracy in disturbance estimation and favorable robustness to measurement noise.After that,an ILDO based composite controller is designed to stabilize the spacecraft attitude.Finally,the effectiveness of the proposed control scheme is verified by simulations.