期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Self-Healing All-in-One Energy Storage for Flexible Self-Powering Ammonia Smartsensors
1
作者 Hongting Ma Fengjuan Lv +9 位作者 Liuxue Shen Kaizhou Yang Yu Jiang Junlin Ma Xiaodong Geng tongrui sun Yuzhen Pan Zhuang Xie Mianqi Xue Nan Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期986-995,共10页
Self-healable and flexible all-in-one self-powering smartsensing devices have recently attracted great attention.Herein,a flexible all-in-one solid-state electronic system of polyvinyl alcohol(PVA)hydrogel-based super... Self-healable and flexible all-in-one self-powering smartsensing devices have recently attracted great attention.Herein,a flexible all-in-one solid-state electronic system of polyvinyl alcohol(PVA)hydrogel-based supercapacitors for self-powering ammonia smartsensors has been fabricated.Self-healing supercapacitors are prepared by integrating polypyrrole(PPy)and boron crosslinked PVA/KCl hydrogel as a sandwich configuration,exhibiting large specific capacitance of 244.81 mF cm^(-2)at 0.47 mA cm^(-2),and good charging/discharging stability of 2000 cycles,while ammonia sensors are realized by a SnO_(2)/PPy-modified conductive PVA hydrogel film,demonstrating an excellent sensing behavior toward NH_(3) vapor under 50 ppb–500 ppm.As a result,selfhealing supercapacitors could well store energy and then self-power sensing unit for remotely real-time detection via a smartphone,acquiring high flexibility of energy-sensing system.With attractive biocompatibility and selfhealing performance toward various environment,this all-in-one flexible energy-smartsensor system would pave the way to novel fabrication process in realization of wearable self-healing smart devices. 展开更多
关键词 ammonia sensor flexible supercapacitor hydrogel SELF-HEALING self-power
下载PDF
Artificial synapses based on organic electrochemical transistors with self-healing dielectric layers
2
作者 Yushan Gao Junyao Zhang +7 位作者 Dapeng Liu tongrui sun Jun Wang Li Li Shilei Dai Jianhua Zhang Zhenglong Yang Jia Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期423-427,共5页
Organic electrochemical transistors(OECTs)have emerged as one type of promising building block for neuromorphic systems owing to their capability of mimicking the morphology and functions of biological neurons and syn... Organic electrochemical transistors(OECTs)have emerged as one type of promising building block for neuromorphic systems owing to their capability of mimicking the morphology and functions of biological neurons and synapses.Currently,numerous kinds of OECTs have been developed,while self-healing performance has been neglected in most reported OECTs.In this work,the OECTs using self-healing polymer electrolytes as dielectric layers are proposed.Several important synaptic behaviors are simulated in the OECTs by doping the channel layers with ions from the electrolytes.Benefitting from the dynamic hydrogen bonds in the self-healing polymer electrolytes,the OECTs can successfully maintain their electrical performance and the ability of emulating synaptic behaviors after self-healing compared with the initial state.More significantly,the sublinear spatial summation function is demonstrated in the OECTs and their potential in flexible electronics is also validated.These results suggest that our devices are expected to be a vital component in the development of future wearable and bioimplantable neuromorphic systems. 展开更多
关键词 Organic electrochemical transistors Artificial synapses Synaptic behaviors SELF-HEALING FLEXIBILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部