期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Temperature-insensitive fiber-optic refractive index sensor based on cascaded in-line interferometer and microwave photonics interrogation system
1
作者 Xun Cai Yi Zhuang +2 位作者 tongtong xie Shichen Zheng Hongyan Fu 《Advanced Photonics Nexus》 2024年第4期118-125,共8页
A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabric... A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity. 展开更多
关键词 fiber-optic sensor microwave photonics frequency demodulation Mach-Zehnder interferometer
下载PDF
Self-mode-locking optoelectronic oscillator with ultrashort time delay
2
作者 Hao Chen Shifeng Liu +6 位作者 tongtong xie Qingshui Guo Qiuyi Shen Chen Zhu Daru Chen Hongyan Fu Shilong Pan 《Advanced Photonics Nexus》 2024年第4期58-69,共12页
The optoelectronic oscillator(OEO)is a typical time-delay system with rich nonlinear dynamical characteristics.Most of the previous research on OEOs has been focused on analyzing the properties of OEOs with a long tim... The optoelectronic oscillator(OEO)is a typical time-delay system with rich nonlinear dynamical characteristics.Most of the previous research on OEOs has been focused on analyzing the properties of OEOs with a long time delay,which makes it difficult to realize mode locking without additional phaselocking mechanisms.We have achieved,for the first time to our knowledge,a self-mode-locking OEO and generated stable microwave frequency combs by analyzing the characteristics of OEOs with an ultrashort time scale.In the experiment,the self-mode-locking OEOs with fundamental mode,second-order harmonic,and sixth-order harmonic were realized by adjusting the system parameters,all of which produced uniform square wave signals with tunable duty cycles,steep rising and falling edges,and periods of less than 20 ns.The self-fundamental-mode-locking OEOs with different time delays were also implemented and experimentally realized.Furthermore,the experiment revealed the self-hybrid mode-locking OEO,which is the coexistence and synchronization of the three measured self-locking modes in one OEO cavity,demonstrating the complex nonlinear dynamical behaviors of the OEO system and enabling the generation of periodic nonuniform hybrid square wave signals.The realization of the self-mode-locking OEO and the generation of flexible and stable square wave signals at ultrashort time scales enrich the study of OEO nonlinear dynamics in the realm of complex microwave waveform generation,offering promising applications in areas such as atomic clocks,radars,communications,and optoelectronic neural networks. 展开更多
关键词 optoelectronic oscillator self-mode locking microwave frequency combs square wave signal
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部