Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions,but it needs efficient catalysts for the N2 reduction reaction(NRR).Here,we re...Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions,but it needs efficient catalysts for the N2 reduction reaction(NRR).Here,we report that FeOOH quantum dots decorated graphene sheet acts as a superior catalyst toward enhanced electrocatalytic N2 reduction to NH3 under ambient conditions.In 0.1 M LiClO4,this hybrid attains a large NH3 yield rate and a high Faradaic efficiency of 27.3µg·h^−1·mg−1cat.and 14.6%at−0.4 V vs.reversible hydrogen electrode,respectively,rivalling the current efficiency of all Fe-based NRR electrocatalysts in aqueous media.It also shows strong durability during the electrolytic process.展开更多
基金supported by the National Natural Science Foundation of China(No.21575137).
文摘Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions,but it needs efficient catalysts for the N2 reduction reaction(NRR).Here,we report that FeOOH quantum dots decorated graphene sheet acts as a superior catalyst toward enhanced electrocatalytic N2 reduction to NH3 under ambient conditions.In 0.1 M LiClO4,this hybrid attains a large NH3 yield rate and a high Faradaic efficiency of 27.3µg·h^−1·mg−1cat.and 14.6%at−0.4 V vs.reversible hydrogen electrode,respectively,rivalling the current efficiency of all Fe-based NRR electrocatalysts in aqueous media.It also shows strong durability during the electrolytic process.