期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Review on Fretting Wear Mechanisms,Models and Numerical Analyses 被引量:3
1
作者 tongyan yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2019年第5期405-432,共28页
Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in component... Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in components supposed to move relative to each other.Fretting wear is a complicated problem involving material properties of tribosystem and working conditions of them.Due to these various factors,researchers have studied the process of fretting wear by experiments and numerical modelling methods.This paper reviews recent literature on the numerical modelling method of fretting wear.After a briefly introduction on the mechanism of fretting wear,numerical models,which are critical issues for fretting wear modelling,are reviewed.The paper is concluded by highlighting possible research topics for future work. 展开更多
关键词 Fretting wear wear models wear mechanisms numerical modelling
下载PDF
Multiscale Analysis of the Effect of Debris on Fretting Wear Process Using a Semi-Concurrent Method
2
作者 Shengjie Wang tongyan yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2020年第1期17-35,共19页
Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concu... Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concurrent multiscale method.Firstly,the macroscale fretting wear model is performed.Secondly,the part with the wear profile is imported from the macroscale model to a microscale model after running in stage.Thirdly,an effective pad’s radius is extracted by analyzing the contact pressure in order to take into account the effect of the debris.Finally,the effective radius is up-scaled from the microscale model to the macroscale model,which is used after running in stage.In this way,the effect of debris is considered by changing the radius of the pad in the macroscale model.Due to the smaller number of elements in the microscale model compared with the macroscale model containing the debris layer,the semi-concurrent method proposed in this paper is more computationally efficient.Moreover,the results of this semi-concurrent method show a better agreement with experimental data,compared to the results of the model ignoring the effect of debris. 展开更多
关键词 Fretting wear DEBRIS multiscale analysis semi-concurrent
下载PDF
Effect of wear debris on fretting fatigue crack initiation 被引量:1
3
作者 Shengjie WANG tongyan yue +1 位作者 Dagang WANG Magd ABDEL WAHAB 《Friction》 SCIE EI CAS CSCD 2022年第6期927-943,共17页
Both wear and fatigue occur in fretting condition,and they interact with one another during the whole process.Fretting fatigue is commonly analysed without considering the effect of wear in partial slip regime,althoug... Both wear and fatigue occur in fretting condition,and they interact with one another during the whole process.Fretting fatigue is commonly analysed without considering the effect of wear in partial slip regime,although wear affects the lifetime of crack initiation.This paper investigates,for the first time,the effect of wear debris on fretting fatigue crack initiation.To investigate the effect of debris,first fretting wear characteristics in partial slip regime are analysed for loading conditions.Then,the effect of wear on fretting fatigue crack initiation is investigated using Ruiz parameters and critical plane methods without considering the debris effect.Through the results,we can see that loading conditions affect the wear profiles in different ways.Moreover,wear has a significant effect on the fatigue in partial slip regime without considering debris especially on the crack initiation location.Finally,considering wear debris in the analysis,its effect on critical plane parameters is investigated.It is found that by considering the wear debris effect,the frtting fatigue crack initiation location is shifted towards the trailing edge.The predictions of both crack initiation location and lifetime show a good agreement with the experimental data. 展开更多
关键词 fretting wear fretting fatigue critical plane Ruiz parameter DEBRIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部