期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Possibility to Realize the Brain-Computer Interface from the Quantum Brain Model Based on Superluminal Particles
1
作者 Takaaki Musha toshiki sugiyama 《Journal of Quantum Information Science》 2011年第3期111-115,共5页
R. Penrose and S. Hameroff have proposed an idea that the brain can attain high efficient quantum computation by functioning of microtubular structure of neurons in the cytoskelton of biological cells, including neuro... R. Penrose and S. Hameroff have proposed an idea that the brain can attain high efficient quantum computation by functioning of microtubular structure of neurons in the cytoskelton of biological cells, including neurons of the brain. But Tegmark estimated the duration of coherence of a quantum state in a warm wet brain to be on the order of 10>–13 </supseconds, which is far smaller than the one tenth of a second associated with consciousness. Contrary to his calculation, it can be shown that the microtubule in a biological brain can perform computation satisfying the time scale required for quantum computation to achieve large quantum bits calculation compared with the conventional silicon processors even at the room temperature from the assumption that tunneling photons are superluminal particles called tachyons. According to the non-local property of tachyons, it is considered that the tachyon field created inside the brain has the capability to exert an influence around the space outside the brain and it functions as a macroscopic quantum dynamical system to meditate the long-range physical correlations with the surrounding world. From standpoint of the brain model based on superluminal tunneling photons, the authors theoretically searched for the possibility to realize the brain-computer interface that allows paralyzed patient to operate computers by their thoughts and they obtained the positive result for its realization from the experiments conducted by using the prototype of a brain-computer interface system. 展开更多
关键词 Brain-Computer Interface EVANESCENT Photon TACHYON QUANTUM Computation DECOHERENCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部