Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potent...Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potentially important in improving grazing capacity on rangelands.However,the morphology-dependent performance of benefactor plants in facilitating forage species growth and supplementation under moderate grazing intensity remains unclear.Here,our main purpose was to measure facilitation performance in terms of the survival of a native forage grass,Agropyron cristatum(L.)Gaertn.(Gramineae).,in accordance with the growth conditions of a sand-fixing benefactor shrub,Caragana microphylla Lam.,in the Hulun Buir Grassland,northern China.Six study sites with patches of A.cristatum and C.microphylla were established at the foot of fixed sand dunes.At each site,five quadrats were set in places where C.microphylla coverage was 100%and A.cristatum grew among the shrubs(shrub quadrats),and another five were set where A.cristatum grew alone without C.microphylla(grass quadrats).We measured the morphological traits of C.microphylla and A.cristatum in all 60 quadrats,along with the soil water content and soil temperature.The data were compared between the shrub and grass quadrats by generalized linear mixed-effect models to assess the shrub's facilitation effects.We also used such models to elucidate the relationship between the average height of C.microphylla and the morphological traits of A.cristatum in the shrub quadrats.The maximum height,average grazed height,and the number of seed heads of A.cristatum were greater in the shrub quadrats than in the grass quadrats.The soil surface temperature was lower in the shrub quadrats.The maximum height and seed head number of A.cristatum were positively associated with the average height of C.microphylla.These results suggest that the grazing impact and heat stress were smaller in shrub quadrats than in grass quadrats,and that the degree of this protective effect depended on the shrub height.The shrub canopy seemed to reduce the increase in soil temperature and keep the grass vigorous.Livestock likely avoided grazing grasses in the C.microphylla patches because of the shrub's spiny leaves;only the upper parts of the grass stems(including the seed heads)protruding from the shrub canopy were grazed.The sand-fixing shrub thus moderates the grazing impact and soil temperature,and contributes to vegetation restoration and grazing system sustainability.展开更多
To understand the effects of grazing activities and climate change on sandy grassland ecosystems in northem China, a livestock field grazing and enclosure experiment was conducted from 1992 to 2006 in Horqin Sand Land...To understand the effects of grazing activities and climate change on sandy grassland ecosystems in northem China, a livestock field grazing and enclosure experiment was conducted from 1992 to 2006 in Horqin Sand Land, Inner Mongolia. The results showed that sustained heavy grazing resulted in serious degradation of the vegetation; moderate grazing can maintain vegetation stabilization; and light grazing can promote rapid restoration of degraded vegetation. The livestock productivity was the highest in the moderate grazing grassland, and sustained heavy grazing resulted in rapid decrease of the livestock productivity. Heavy grazing can cause a retrogressive succession of grassland vegetation, whereas moderate and light grazing may promote progressive succession of plant species. The effects of changing climate on succession processes were not significant in the short term; a warm-humid climate is favorable to restoration of degraded vegetation, whereas a sustained warm-drought climate may result in degradation of grassland vegetation. Heavy livestock grazing should be stopped for the sustainable use of grassland; the proper grazing intensity for sandy grassland is two to three sheep or sheep equivalents per hectare in Inner Mongolia.展开更多
To understand the effects of animal grazing activities and climate change on sandy grassland vegetation in northern China, a field grazing and protected enclosure experiment was conducted from 1992 through 2006 in Hor...To understand the effects of animal grazing activities and climate change on sandy grassland vegetation in northern China, a field grazing and protected enclosure experiment was conducted from 1992 through 2006 in Horqin Sand Land, Inner Mongolia. The results showed that (1) the grazing was primary responsible for changes of the vegetation richness and diversity in the grazing grassland and that changing climate was the main reason for changes in the species richness and diversity in the grassland protected from grazing; (2) light and moderate grazing can promote restoration of the richness and the diversity in the degraded grassland, and heavy grazing could result in a decrease of the richness and diversity; (3) heavy grazing can result in significant decrease of the perennial diversity, and moderate and light grazing promotes increase of the perennial diversity; the grazing, whether heavy or moderate and light grazing, was beneficial to increase of the annual diversity; (4) heavy grazing was not beneficial to diversity of Graminean and Chenopodiaceae, and moderate and light grazing was favorable the diversity of Compositae and Chenopodiaceae; (5) the warm-humid climate was favorable to increase of the richness and the diversity, and the warm-drought climate could result in decease of the richness and the diversity; (6) increased precipitation was favorable to perennial diversity and the diversity of Graminean, Leguminosae, and Compositae, and decreased precipitation had few effects on the annual diversity and Chenopodiaceae diversity.展开更多
基金supported by the Tripartite Environment Ministers Meeting(TEMM)JSPS KAKENHI(JP19H04316).We thank the staff of the Chinese Research Academy of Environmental Sciences(CRAES)the Overseas Environmental Cooperation Center(OECC),Japan for their support during the field survey.
文摘Shrub species are used in restoration projects on dryland for their facilitation effects,which include environmental improvements and protection from herbivore feeding.Facilitation effects on forage grasses are potentially important in improving grazing capacity on rangelands.However,the morphology-dependent performance of benefactor plants in facilitating forage species growth and supplementation under moderate grazing intensity remains unclear.Here,our main purpose was to measure facilitation performance in terms of the survival of a native forage grass,Agropyron cristatum(L.)Gaertn.(Gramineae).,in accordance with the growth conditions of a sand-fixing benefactor shrub,Caragana microphylla Lam.,in the Hulun Buir Grassland,northern China.Six study sites with patches of A.cristatum and C.microphylla were established at the foot of fixed sand dunes.At each site,five quadrats were set in places where C.microphylla coverage was 100%and A.cristatum grew among the shrubs(shrub quadrats),and another five were set where A.cristatum grew alone without C.microphylla(grass quadrats).We measured the morphological traits of C.microphylla and A.cristatum in all 60 quadrats,along with the soil water content and soil temperature.The data were compared between the shrub and grass quadrats by generalized linear mixed-effect models to assess the shrub's facilitation effects.We also used such models to elucidate the relationship between the average height of C.microphylla and the morphological traits of A.cristatum in the shrub quadrats.The maximum height,average grazed height,and the number of seed heads of A.cristatum were greater in the shrub quadrats than in the grass quadrats.The soil surface temperature was lower in the shrub quadrats.The maximum height and seed head number of A.cristatum were positively associated with the average height of C.microphylla.These results suggest that the grazing impact and heat stress were smaller in shrub quadrats than in grass quadrats,and that the degree of this protective effect depended on the shrub height.The shrub canopy seemed to reduce the increase in soil temperature and keep the grass vigorous.Livestock likely avoided grazing grasses in the C.microphylla patches because of the shrub's spiny leaves;only the upper parts of the grass stems(including the seed heads)protruding from the shrub canopy were grazed.The sand-fixing shrub thus moderates the grazing impact and soil temperature,and contributes to vegetation restoration and grazing system sustainability.
基金funded by a Chinese National Key Project for Basic Scientific Research (2009CB421303)a Chinese National Fund Project (30972422)
文摘To understand the effects of grazing activities and climate change on sandy grassland ecosystems in northem China, a livestock field grazing and enclosure experiment was conducted from 1992 to 2006 in Horqin Sand Land, Inner Mongolia. The results showed that sustained heavy grazing resulted in serious degradation of the vegetation; moderate grazing can maintain vegetation stabilization; and light grazing can promote rapid restoration of degraded vegetation. The livestock productivity was the highest in the moderate grazing grassland, and sustained heavy grazing resulted in rapid decrease of the livestock productivity. Heavy grazing can cause a retrogressive succession of grassland vegetation, whereas moderate and light grazing may promote progressive succession of plant species. The effects of changing climate on succession processes were not significant in the short term; a warm-humid climate is favorable to restoration of degraded vegetation, whereas a sustained warm-drought climate may result in degradation of grassland vegetation. Heavy livestock grazing should be stopped for the sustainable use of grassland; the proper grazing intensity for sandy grassland is two to three sheep or sheep equivalents per hectare in Inner Mongolia.
基金funded by one of the 973 Projects (2009CB421303)
文摘To understand the effects of animal grazing activities and climate change on sandy grassland vegetation in northern China, a field grazing and protected enclosure experiment was conducted from 1992 through 2006 in Horqin Sand Land, Inner Mongolia. The results showed that (1) the grazing was primary responsible for changes of the vegetation richness and diversity in the grazing grassland and that changing climate was the main reason for changes in the species richness and diversity in the grassland protected from grazing; (2) light and moderate grazing can promote restoration of the richness and the diversity in the degraded grassland, and heavy grazing could result in a decrease of the richness and diversity; (3) heavy grazing can result in significant decrease of the perennial diversity, and moderate and light grazing promotes increase of the perennial diversity; the grazing, whether heavy or moderate and light grazing, was beneficial to increase of the annual diversity; (4) heavy grazing was not beneficial to diversity of Graminean and Chenopodiaceae, and moderate and light grazing was favorable the diversity of Compositae and Chenopodiaceae; (5) the warm-humid climate was favorable to increase of the richness and the diversity, and the warm-drought climate could result in decease of the richness and the diversity; (6) increased precipitation was favorable to perennial diversity and the diversity of Graminean, Leguminosae, and Compositae, and decreased precipitation had few effects on the annual diversity and Chenopodiaceae diversity.