期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electrobiocorrosion by microbes without outer-surface cytochromes 被引量:1
1
作者 Dawn E.Holmes trevor l.woodard +2 位作者 Jessica A.Smith Florin Musat Derek R.Lovley 《mLife》 CSCD 2024年第1期110-118,共9页
Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage.Some microbes are capable of direct metal-to-microbe electron transfer(electrobiocorrosion),but the prevalence of electrobiocorr... Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage.Some microbes are capable of direct metal-to-microbe electron transfer(electrobiocorrosion),but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation.Previous studies have suggested that respiration with 316L stainless steel as the electron donor is indicative of electrobiocorrosion,because,unlike pure Fe^(0),316L stainless steel does not abiotically generate H_(2) as an intermediary electron carrier.Here,we report that all of the methanogens(Methanosarcina vacuolata,Methanothrix soehngenii,and Methanobacterium strain IM1)and acetogens(Sporomusa ovata and Clostridium ljungdahli)evaluated respired with pure Fe^(0)as the electron donor,but only M.vacuolata,Mx.soehngeni,and S.ovata were capable of stainless steel electrobiocorrosion.The electrobiocorrosive methanogens re-quired acetate as an additional energy source in order to produce methane from stainless steel.Cocultures of S.ovata and Mx.soehngeni demonstrated how acetogens can provide acetate to methanogens during corrosion.Not only was Meth-anobacterium strain IM1 not capable of electrobiocorrosion,but it also did not accept electrons from Geobacter metal-lireducens,an effective electron-donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe^(0).The finding that M.vacuolata,Mx.soehngeni,and S.ovata are capable of electrobiocorrosion,despite a lack of the outer-surface c-type cytochromes previously found to be important in other electrobiocorrosive microbes,demonstrates that there are multiple microbial strategies for making electrical contact with Fe^(0). 展开更多
关键词 ACETOGEN CORROSION Fe^(0) METHANOGEN stainless steel
原文传递
Bioelectronic protein nanowire sensors for ammonia detection 被引量:2
2
作者 Alexander F.Smith Xiaomeng Liu +5 位作者 trevor l.woodard Tianda Fu Todd Emrick Juan M.Jiménez Derek R.Lovley Jun Yao 《Nano Research》 SCIE EI CAS CSCD 2020年第5期1479-1484,共6页
Electronic sensors based on biomaterials can lead to novel green technologies that are low cost,renewable,and eco-friendly.Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from t... Electronic sensors based on biomaterials can lead to novel green technologies that are low cost,renewable,and eco-friendly.Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens.The nanowire sensor responds to a broad range of ammonia concentrations(10 to 10^6 ppb),which covers the range relevant for industrial,environmental,and biomedical applications.The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath.These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry,agriculture,environmental monitoring,and healthcare. 展开更多
关键词 NANOWIRE protein nanowire biomaterial BIOELECTRONICS BIOSENSOR ammonia sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部