Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage.Some microbes are capable of direct metal-to-microbe electron transfer(electrobiocorrosion),but the prevalence of electrobiocorr...Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage.Some microbes are capable of direct metal-to-microbe electron transfer(electrobiocorrosion),but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation.Previous studies have suggested that respiration with 316L stainless steel as the electron donor is indicative of electrobiocorrosion,because,unlike pure Fe^(0),316L stainless steel does not abiotically generate H_(2) as an intermediary electron carrier.Here,we report that all of the methanogens(Methanosarcina vacuolata,Methanothrix soehngenii,and Methanobacterium strain IM1)and acetogens(Sporomusa ovata and Clostridium ljungdahli)evaluated respired with pure Fe^(0)as the electron donor,but only M.vacuolata,Mx.soehngeni,and S.ovata were capable of stainless steel electrobiocorrosion.The electrobiocorrosive methanogens re-quired acetate as an additional energy source in order to produce methane from stainless steel.Cocultures of S.ovata and Mx.soehngeni demonstrated how acetogens can provide acetate to methanogens during corrosion.Not only was Meth-anobacterium strain IM1 not capable of electrobiocorrosion,but it also did not accept electrons from Geobacter metal-lireducens,an effective electron-donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe^(0).The finding that M.vacuolata,Mx.soehngeni,and S.ovata are capable of electrobiocorrosion,despite a lack of the outer-surface c-type cytochromes previously found to be important in other electrobiocorrosive microbes,demonstrates that there are multiple microbial strategies for making electrical contact with Fe^(0).展开更多
Electronic sensors based on biomaterials can lead to novel green technologies that are low cost,renewable,and eco-friendly.Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from t...Electronic sensors based on biomaterials can lead to novel green technologies that are low cost,renewable,and eco-friendly.Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens.The nanowire sensor responds to a broad range of ammonia concentrations(10 to 10^6 ppb),which covers the range relevant for industrial,environmental,and biomedical applications.The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath.These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry,agriculture,environmental monitoring,and healthcare.展开更多
文摘Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage.Some microbes are capable of direct metal-to-microbe electron transfer(electrobiocorrosion),but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation.Previous studies have suggested that respiration with 316L stainless steel as the electron donor is indicative of electrobiocorrosion,because,unlike pure Fe^(0),316L stainless steel does not abiotically generate H_(2) as an intermediary electron carrier.Here,we report that all of the methanogens(Methanosarcina vacuolata,Methanothrix soehngenii,and Methanobacterium strain IM1)and acetogens(Sporomusa ovata and Clostridium ljungdahli)evaluated respired with pure Fe^(0)as the electron donor,but only M.vacuolata,Mx.soehngeni,and S.ovata were capable of stainless steel electrobiocorrosion.The electrobiocorrosive methanogens re-quired acetate as an additional energy source in order to produce methane from stainless steel.Cocultures of S.ovata and Mx.soehngeni demonstrated how acetogens can provide acetate to methanogens during corrosion.Not only was Meth-anobacterium strain IM1 not capable of electrobiocorrosion,but it also did not accept electrons from Geobacter metal-lireducens,an effective electron-donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe^(0).The finding that M.vacuolata,Mx.soehngeni,and S.ovata are capable of electrobiocorrosion,despite a lack of the outer-surface c-type cytochromes previously found to be important in other electrobiocorrosive microbes,demonstrates that there are multiple microbial strategies for making electrical contact with Fe^(0).
基金J.Y.and D.R.L.acknowledge support from a seed fund through the Office of Technology Commercialization and Ventures at the University of Massachusetts,Amherst.J.Y.acknowledges the support from a National Science Foundation(NSF)Award ECCS-1917630.J.M.J.acknowledges support from a NSF grants CAREER CMMI184230&A.F.S.acknowledges the support from a NSF Graduate Research Fellowship(No.S12100000000937).Part of the device fabrication work was conducted in the clean room of the Center for Hierarchical Manufacturing(CHM),an NSF Nanoscale Science and Engineering Center(NSEC)located at the University of Massachusetts,Amherst.
文摘Electronic sensors based on biomaterials can lead to novel green technologies that are low cost,renewable,and eco-friendly.Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens.The nanowire sensor responds to a broad range of ammonia concentrations(10 to 10^6 ppb),which covers the range relevant for industrial,environmental,and biomedical applications.The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath.These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry,agriculture,environmental monitoring,and healthcare.