期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Data-driven approach to solve vertical drain under time-dependent loading
1
作者 trong nghia-nguyen Mamoru KIKUMOTO +3 位作者 Samir KHATIR Salisa CHAIYAPUT HNGUYEN-XUAN Thanh CUONG-LE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期696-711,共16页
Currently,the vertical drain consolidation problem is solved by numerous analytical solutions,such as time-dependent solutions and linear or parabolic radial drainage in the smear zone,and no artificial intelligence(A... Currently,the vertical drain consolidation problem is solved by numerous analytical solutions,such as time-dependent solutions and linear or parabolic radial drainage in the smear zone,and no artificial intelligence(AI)approach has been applied.Thus,in this study,a new hybrid model based on deep neural networks(DNNs),particle swarm optimization(PSO),and genetic algorithms(GAs)is proposed to solve this problem.The DNN can effectively simulate any sophisticated equation,and the PSO and GA can optimize the selected DNN and improve the performance of the prediction model.In the present study,analytical solutions to vertical drains in the literature are incorporated into the DNN–PSO and DNN–GA prediction models with three different radial drainage patterns in the smear zone under timedependent loading.The verification performed with analytical solutions and measurements from three full-scale embankment tests revealed promising applications of the proposed approach. 展开更多
关键词 vertical drain artificial neural network time-dependent loading deep learning network genetic algorithm particle swarm optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部