AIM To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate(TCP) on osteogenesis.METHODS Bone marrow cells were harvested from a sheep and cultured in a minimal essential mediu...AIM To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate(TCP) on osteogenesis.METHODS Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium(MEM) containing ascorbic acid phosphate(AscP) and dexamethasone(Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper. Additionally, harvested bone marrow cells were cultured in MEM only as a negative control group, and in MEM with AscP, Dex, and β-glycerophosphate as a positive control group. For in vitro evaluation, we measured the alkaline phosphatase(ALP) activity and osteocalcin(OC) content in the media of the cultured cells from each group. For in vivo analysis, a porous TCP ceramic was used as a scaffold. We prepared an experimental group comprising TCP scaffolds wrapped with the osteogenic matrix cell sheets and a control group consisting of the TCP scaffold only. The constructs wereimplanted subcutaneously into athymic rats and the cell donor sheep, and bone formation was confirmed by histology after 4 wk.RESULTS In the in vitro part, the mean ALP activity was 0.39 ± 0.03 mg/well in the negative control group, 0.67 ± 0.04 mg/well in the sheet group, and 0.65 ± 0.07 mg/well in the positive control group. The mean OC levels were 1.46 ± 0.33 ng/well in the negative control group, 3.92 ± 0.16 ng/well in the sheet group, and 4.4 ± 0.47 ng/well in the positive control group, respectively. The ALP activity and OC levels were significantly higher in the cell sheet and positive control groups than in the negative control group(P < 0.05). There was no significant difference in ALP activity or OC levels between the cell sheet group and the positive control group(P > 0.05). TCP constructs wrapped with cell sheets prior to implantation showed bone formation, in contrast to TCP scaffolds alone, which exhibited poor bone formation when implanted, in the subcutaneous layer both in athymic rats and in the sheep. CONCLUSION This technique for preparing highly osteoinductive TCP may promote regeneration in large bone defects.展开更多
AIM To establish a hypoxic environment for promoting osteogenesis in rat marrow stromal cells(MSCs) using osteogenic matrix cell sheets(OMCSs).METHODS Rat MSCs were cultured in osteogenic media under one of four varyi...AIM To establish a hypoxic environment for promoting osteogenesis in rat marrow stromal cells(MSCs) using osteogenic matrix cell sheets(OMCSs).METHODS Rat MSCs were cultured in osteogenic media under one of four varying oxygen conditions: Normoxia(21% O_2) for 14 d(NN), normoxia for 7 d followed by hypoxia(5% O_2) for 7 d(NH), hypoxia for 7 d followed by normoxia for 7 d(HN), or hypoxia for 14 d(HH). Osteogenesis was evaluated by observing changes in cell morphology and calcium deposition, and by measuring osteocalcin secretion(ELISA) and calcium content. In vivo syngeneic transplantation using OMCSs and β-tricalcium phosphate discs, preconditioned under NN or HN conditions, was also evaluated by histology, calcium content measurements,and real-time quantitative PCR.RESULTS In the NN and HN groups, differentiated, cuboidal-shaped cells were readily observed, along with calcium deposits. In the HN group, the levels of secreted osteocalcin increased rapidly from day 10 as compared with the other groups, and plateaued at day 12(P < 0.05). At day 14, the HN group showed the highest amount of calcium deposition. In vivo, the HN group showed histologically prominent new bone formation, increased calcium deposition, and higher collagen type Ⅰ?messenger RNA expression as compared with the NN group.CONCLUSION The results of this study indicate that modifying oxygen tension is an effective method to enhance the osteogenic ability of MSCs used for OMCSs.展开更多
基金Supported by Grant-in-Aid for scientific research from the Ministry of Health,Labour and Welfare,Japan
文摘AIM To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate(TCP) on osteogenesis.METHODS Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium(MEM) containing ascorbic acid phosphate(AscP) and dexamethasone(Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper. Additionally, harvested bone marrow cells were cultured in MEM only as a negative control group, and in MEM with AscP, Dex, and β-glycerophosphate as a positive control group. For in vitro evaluation, we measured the alkaline phosphatase(ALP) activity and osteocalcin(OC) content in the media of the cultured cells from each group. For in vivo analysis, a porous TCP ceramic was used as a scaffold. We prepared an experimental group comprising TCP scaffolds wrapped with the osteogenic matrix cell sheets and a control group consisting of the TCP scaffold only. The constructs wereimplanted subcutaneously into athymic rats and the cell donor sheep, and bone formation was confirmed by histology after 4 wk.RESULTS In the in vitro part, the mean ALP activity was 0.39 ± 0.03 mg/well in the negative control group, 0.67 ± 0.04 mg/well in the sheet group, and 0.65 ± 0.07 mg/well in the positive control group. The mean OC levels were 1.46 ± 0.33 ng/well in the negative control group, 3.92 ± 0.16 ng/well in the sheet group, and 4.4 ± 0.47 ng/well in the positive control group, respectively. The ALP activity and OC levels were significantly higher in the cell sheet and positive control groups than in the negative control group(P < 0.05). There was no significant difference in ALP activity or OC levels between the cell sheet group and the positive control group(P > 0.05). TCP constructs wrapped with cell sheets prior to implantation showed bone formation, in contrast to TCP scaffolds alone, which exhibited poor bone formation when implanted, in the subcutaneous layer both in athymic rats and in the sheep. CONCLUSION This technique for preparing highly osteoinductive TCP may promote regeneration in large bone defects.
文摘AIM To establish a hypoxic environment for promoting osteogenesis in rat marrow stromal cells(MSCs) using osteogenic matrix cell sheets(OMCSs).METHODS Rat MSCs were cultured in osteogenic media under one of four varying oxygen conditions: Normoxia(21% O_2) for 14 d(NN), normoxia for 7 d followed by hypoxia(5% O_2) for 7 d(NH), hypoxia for 7 d followed by normoxia for 7 d(HN), or hypoxia for 14 d(HH). Osteogenesis was evaluated by observing changes in cell morphology and calcium deposition, and by measuring osteocalcin secretion(ELISA) and calcium content. In vivo syngeneic transplantation using OMCSs and β-tricalcium phosphate discs, preconditioned under NN or HN conditions, was also evaluated by histology, calcium content measurements,and real-time quantitative PCR.RESULTS In the NN and HN groups, differentiated, cuboidal-shaped cells were readily observed, along with calcium deposits. In the HN group, the levels of secreted osteocalcin increased rapidly from day 10 as compared with the other groups, and plateaued at day 12(P < 0.05). At day 14, the HN group showed the highest amount of calcium deposition. In vivo, the HN group showed histologically prominent new bone formation, increased calcium deposition, and higher collagen type Ⅰ?messenger RNA expression as compared with the NN group.CONCLUSION The results of this study indicate that modifying oxygen tension is an effective method to enhance the osteogenic ability of MSCs used for OMCSs.