期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Operando monitoring of dendrite formation in lithium metal batteries via ultrasensitive tilted fiber Bragg grating sensors
1
作者 Xile Han Hai Zhong +8 位作者 Kaiwei Li Xiaobin Xue Wen Wu Nan Hu Xihong Lu Jiaqiang Huang Gaozhi Xiao Yaohua Mai tuan guo 《Light(Science & Applications)》 SCIE EI CSCD 2024年第1期153-166,共14页
Lithium(Li)dendrite growth significantly deteriorates the performance and shortens the operation life of lithium metal batteries.Capturing the intricate dynamics of surface localized and rapid mass transport at the el... Lithium(Li)dendrite growth significantly deteriorates the performance and shortens the operation life of lithium metal batteries.Capturing the intricate dynamics of surface localized and rapid mass transport at the electrolyte–electrode interface of lithium metal is essential for the understanding of the dendrite growth process,and the evaluation of the solutions mitigating the dendrite growth issue.Here we demonstrate an approach based on an ultrasensitive tilted fiber Bragg grating(TFBG)sensor which is inserted close to the electrode surface in a working lithium metal battery,without disturbing its operation.Thanks to the superfine optical resonances of the TFBG,in situ and rapid monitoring of mass transport kinetics and lithium dendrite growth at the nanoscale interface of lithium anodes have been achieved.Reliable correlations between the performance of different natural/artificial solid electrolyte interphases(SEIs)and the time-resolved optical responses have been observed and quantified,enabling us to link the nanoscale ion and SEI behavior with the macroscopic battery performance.This new operando tool will provide additional capabilities for parametrization of the batteries’electrochemistry and help identify the optimal interphases of lithium metal batteries to enhance battery performance and its safety. 展开更多
关键词 BATTERY LITHIUM ELECTROLYTE
原文传递
In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage 被引量:13
2
作者 Jiajie Lao Peng Sun +6 位作者 Fu Liu Xuejun Zhang Chuanxi Zhao Wenjie Mai tuan guo Gaozhi Xiao Jacques Albert 《Light(Science & Applications)》 SCIE EI CAS CSCD 2018年第1期729-739,共11页
In situ and continuous monitoring of electrochemical activity is key to understanding and evaluating the operation mechanism and efficiency of energy storage devices.However,this task remains challenging.For example,t... In situ and continuous monitoring of electrochemical activity is key to understanding and evaluating the operation mechanism and efficiency of energy storage devices.However,this task remains challenging.For example,the present methods are not capable of providing the real-time information about the state of charge(SOC)of the energy storage devices while in operation.To address this,a novel approach based on an electrochemical surface plasmon resonance(SPR)optical fiber sensor is proposed here.This approach offers the capability of in situ comprehensive monitoring of the electrochemical activity(the electrode potential and the SOC)of supercapacitors(used as an example).The sensor adopted is a tilted fiber Bragg grating imprinted in a commercial single-mode fiber and coated with a nanoscale gold film for high-efficiency SPR excitation.Unlike conventional“bulk”detection methods for electrode activity,our approach targets the“localized”(sub-μm-scale)charge state of the ions adjacent to the electrode interface of supercapacitors by monitoring the properties of the SPR wave on the fiber sensor surface located adjacent to the electrode.A stable and reproducible correlation between the real-time charge–discharge cycles of the supercapacitors and the optical transmission of the optical fiber has been found.Moreover,the method proposed is inherently immune to temperature cross-talk because of the presence of environmentally insensitive reference features in the optical transmission spectrum of the devices.Finally,this particular application is ideally suited to the fundamental qualities of optical fiber sensors,such as their compact size,flexible shape,and remote operation capability,thereby opening the way for other opportunities for electrochemical monitoring in various hard-to-reach spaces and remote environments. 展开更多
关键词 fiber optical CHARGE
原文传递
Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs 被引量:5
3
作者 Lanhua Liu Xuejun Zhang +4 位作者 Qian Zhu Kaiwei Li Yun Lu Xiaohong Zhou tuan guo 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第10期1849-1862,共14页
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors.However,a long-lasting challenge unad... The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors.However,a long-lasting challenge unaddressed is how to achieve ultrahigh sensitive,continuous,and in situ measurement with a portable device for infield and remote environmental monitoring.Here we demonstrate a simple-to-implement plasmonic optical fiber biosensing platform to achieve an improved light–matter interaction and advanced surface chemistry for ultrasensitive detection of endocrine disruptors.Our platform is based on a gold-coated highly tilted fiber Bragg grating that excites high-density narrow cladding mode spectral combs that overlap with the broad absorption of the surface plasmon for high accuracy interrogation,hence enabling the ultrasensitive monitoring of refractive index changes at the fiber surface.Through the use of estrogen receptors as the model,we design an estradiol–streptavidin conjugate with the assistance of molecular dynamics,converting the specific recognition of environmental estrogens(EEs)by estrogen receptor into surface-based affinity bioassay for protein.The ultrasensitive platform with conjugate-induced amplification biosensing approach enables the subsequent detection for EEs down to 1.5×10−3 ng ml−1 estradiol equivalent concentration level,which is one order lower than the defined maximal E2 level in drinking water set by the Japanese government.The capability to detect EEs down to nanogram per liter level is the lowest limit of detection for any estrogen receptor-based detection reported thus far.Its compact size,flexible shape,and remote operation capability open the way for detecting other endocrine disruptors with ultrahigh sensitivity and in various hard-toreach spaces,thereby having the potential to revolutionize environment and health monitoring. 展开更多
关键词 FIBER SPECTRAL CONJUGATE
原文传递
Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions 被引量:1
4
作者 ZHI LI YONGGUANG XIAO +8 位作者 FU LIU XIANGYU YAN DAOTONG YOU KAIWEI LI LIXI ZENG MINGSHAN ZHU GAOZHI XIAO JACQUES ALBERT tuan guo 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第9期2086-2097,共12页
In situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst's surfaces.However,existing techniques are largely unable to capture the rapidly ch... In situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst's surfaces.However,existing techniques are largely unable to capture the rapidly changing temperatures occurring in sub-μm layers at liquid-solid interfaces exposed to light.To address this,a sensing system based on a gold-coated conventional single-mode optical fiber with a tilted fiber Bragg grating inscribed in the fiber core is proposed and demonstrated.The spectral transmission from these devices is made up of a dense comb of narrowband resonances that can differentiate between localized temperatures rapid changes at the catalyst's surface and those of the environment.By using the gold coating of the fiber as an electrode in an electrochemical reactor and exposing it to light,thermal effects in photo-induced catalysis at the interface can be decoded with a temperature resolution of 0.1℃and a temporal resolution of 0.1 sec,without perturbing the catalytic operation that is measured simultaneously.As a demonstration,stable and reproducible correlations between the light-to-heat conversion and catalytic activities over time were measured for two different catalysis processes(linear and nonlinear).These kinds of sensing applications are ideally suited to the fundamental qualities of optical fiber sensors,such as their compact size,flexible shape,and remote measurement capability,thereby opening the way for various thermal monitoring in hard-to-reach spaces and rapid catalytic reaction processes. 展开更多
关键词 CATALYSIS CATALYST thereby
原文传递
Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser 被引量:1
5
作者 Bing ZHANG Linghao CHENG +3 位作者 Yizhi LIANG Long JIN tuan guo Bai-Ou GUAN 《Photonic Sensors》 SCIE EI CAS CSCD 2017年第3期206-210,共5页
A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and... A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement. 展开更多
关键词 Fiber laser sensors Doppler effect vibration measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部