High-/medium-entropy stainless alloys(HESAs/MESAs)are a new kind of alloys with great potential to combine excellent properties from high-/medium-entropy alloys(HEAs/MEAs)and stainless steels.A CrFeNi MESA was chosen ...High-/medium-entropy stainless alloys(HESAs/MESAs)are a new kind of alloys with great potential to combine excellent properties from high-/medium-entropy alloys(HEAs/MEAs)and stainless steels.A CrFeNi MESA was chosen to investigate its microstructures and mechanical behaviors.After homogenization,the strength and ductility of CrFeNi MESAs with single-phase face-centered-cubic(fcc)structure were higher compared with those of Fe_(100−x-y)Cr_(x)Ni_(y)austenitic stainless steels.Cr-rich body-centered-cubic(bcc)precipitates and heterogeneous structure were introduced by cold rolling and annealing at 800℃.Rolling at 700℃ results in higher dislocation density and the occurrence of lamellar Cr-rich bcc precipitates.High-density dislocations and fcc grains with heterogeneous structure,together with Cr-rich bcc precipitates,contribute to a yield strength improvement of about 50 MPa,and appreciable tensile yield strength of~540 MPa and fracture strain of~20%are obtained.It reveals that not only compositional variations but also grain size and phase structure tuning can be utilized for achieving desired mechanical properties.展开更多
基金support of the Natural Science Foundation of Shanxi Province,China(Nos.201901D111105,201901D111114)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi(2019)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,No.KFJJ20-13 M).
文摘High-/medium-entropy stainless alloys(HESAs/MESAs)are a new kind of alloys with great potential to combine excellent properties from high-/medium-entropy alloys(HEAs/MEAs)and stainless steels.A CrFeNi MESA was chosen to investigate its microstructures and mechanical behaviors.After homogenization,the strength and ductility of CrFeNi MESAs with single-phase face-centered-cubic(fcc)structure were higher compared with those of Fe_(100−x-y)Cr_(x)Ni_(y)austenitic stainless steels.Cr-rich body-centered-cubic(bcc)precipitates and heterogeneous structure were introduced by cold rolling and annealing at 800℃.Rolling at 700℃ results in higher dislocation density and the occurrence of lamellar Cr-rich bcc precipitates.High-density dislocations and fcc grains with heterogeneous structure,together with Cr-rich bcc precipitates,contribute to a yield strength improvement of about 50 MPa,and appreciable tensile yield strength of~540 MPa and fracture strain of~20%are obtained.It reveals that not only compositional variations but also grain size and phase structure tuning can be utilized for achieving desired mechanical properties.