期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Closed-loop superconducting materials discovery
1
作者 Elizabeth A.Pogue Alexander New +15 位作者 Kyle McElroy Nam Q.Le Michael J.Pekala Ian McCue Eddie Gienger Janna Domenico Elizabeth Hedrick tyrel m.mcqueen Brandon Wilfong Christine D.Piatko Christopher R.Ratto Andrew Lennon Christine Chung Timothy Montalbano Gregory Bassen Christopher D.Stiles 《npj Computational Materials》 SCIE EI CSCD 2023年第1期471-478,共8页
Discovery of novel materials is slow but necessary for societal progress.Here,we demonstrate a closed-loop machine learning(ML)approach to rapidly explore a large materials search space,accelerating the intentional di... Discovery of novel materials is slow but necessary for societal progress.Here,we demonstrate a closed-loop machine learning(ML)approach to rapidly explore a large materials search space,accelerating the intentional discovery of superconducting compounds.By experimentally validating the results of the ML-generated superconductivity predictions and feeding those data back into the ML model to refine,we demonstrate that success rates for superconductor discovery can be more than doubled.Through four closed-loop cycles,we report discovery of a superconductor in the Zr-In-Ni system,re-discovery of five superconductors unknown in the training datasets,and identification of two additional phase diagrams of interest for new superconducting materials.Our work demonstrates the critical role experimental feedback provides in ML-driven discovery,and provides a blueprint for how to accelerate materials progress. 展开更多
关键词 DISCOVERY MATERIALS LOOP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部