A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micr...A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10672165 and 10732050) and KJCX2-YW-M04.
文摘A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.