Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortabl...Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortable for users,but it also utilizes energy more efficiently for both heating and cooling purposes.Because of this,increasing the building’s energy efficiency requires first controlling the amount of light that enters the space.Considering that the only parts of the building that come into direct contact with the sun are the windows,it is essential to make use of louvers in order to regulate the amount of sunlight that enters the building.Through the use of Ant Colony Optimization(ACO),the purpose of this study is to estimate the proportions and technical specifications of external louvers,as well as to propose a model for designing the southern openings of educational space in order to maximize energy efficiency and intelligent consumption,as well as to ensure that the appropriate amount of light is provided.According to the findings of this research,the design of external louvers is heavily influenced by a total of five distinct aspects:the number of louvers,the depth of the louvers,the angle of rotation of the louvers,the distance between the louvers and the window,and the reflection coefficient of the louvers.The results of the 2067 simulated case study show that the best reflection rates of the louvers are between 0 and 15 percent,and the most optimal distance between the louvers and the window is in the range of 0 to 18 centimeters.Additionally,the results show that the best distance between the louvers and the window is in the range of 0 to 18 centimeters.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to d...Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni_(80)P_(20)MGs.For this purpose,the samples are prepared with cooling rates of 10^(10) K/s-10^(12) K/s to make glassy alloys with different atomic configurations.Firstly,it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen,indicating the aggregations in both elastically soft and hard regions.After the primary evaluations,the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations.The results indicate that the sample with intermediate structural heterogeneity prepared with 10^(11) K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation.The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.展开更多
文摘Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortable for users,but it also utilizes energy more efficiently for both heating and cooling purposes.Because of this,increasing the building’s energy efficiency requires first controlling the amount of light that enters the space.Considering that the only parts of the building that come into direct contact with the sun are the windows,it is essential to make use of louvers in order to regulate the amount of sunlight that enters the building.Through the use of Ant Colony Optimization(ACO),the purpose of this study is to estimate the proportions and technical specifications of external louvers,as well as to propose a model for designing the southern openings of educational space in order to maximize energy efficiency and intelligent consumption,as well as to ensure that the appropriate amount of light is provided.According to the findings of this research,the design of external louvers is heavily influenced by a total of five distinct aspects:the number of louvers,the depth of the louvers,the angle of rotation of the louvers,the distance between the louvers and the window,and the reflection coefficient of the louvers.The results of the 2067 simulated case study show that the best reflection rates of the louvers are between 0 and 15 percent,and the most optimal distance between the louvers and the window is in the range of 0 to 18 centimeters.Additionally,the results show that the best distance between the louvers and the window is in the range of 0 to 18 centimeters.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
文摘Understanding the relation between spatial heterogeneity and structural rejuvenation is one of the hottest topics in the field of metallic glasses(MGs).In this work,molecular dynamics(MD)simulation is implemented to discover the effects of initial spatial heterogeneity on the level of rejuvenation in the Ni_(80)P_(20)MGs.For this purpose,the samples are prepared with cooling rates of 10^(10) K/s-10^(12) K/s to make glassy alloys with different atomic configurations.Firstly,it is found that the increase in the cooling rate leads the Gaussian-type shear modulus distribution to widen,indicating the aggregations in both elastically soft and hard regions.After the primary evaluations,the elastostatic loading is also used to transform structural rejuvenation into the atomic configurations.The results indicate that the sample with intermediate structural heterogeneity prepared with 10^(11) K/s exhibits the maximum structural rejuvenation which is due to the fact that the atomic configuration in an intermediate structure contains more potential sites for generating the maximum atomic rearrangement and loosely packed regions under an external excitation.The features of atomic rearrangement and structural changes under the rejuvenation process are discussed in detail.