The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of...The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape fimction. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.展开更多
This paper presents a study of visco-elastic flow of an incompressible generalized Oldroyd-B fluid between two infinite parallel plates in which the constitutive equation involves fractional order time derivative. The...This paper presents a study of visco-elastic flow of an incompressible generalized Oldroyd-B fluid between two infinite parallel plates in which the constitutive equation involves fractional order time derivative. The solutions of field equations are being obtained for the motion of the said fluid between two parallel plates where the lower plate starts to move with steady velocity and the upper plate remains fixed in the first problem and the upper plate oscillates with constant frequency and the other being at rest in the second problem. The exact solutions for the velocity field are obtained by using the Laplace transform and finite Fourier Sine transform technique in terms of Mittag Leffler and generalised functions. The analytical expression for the velocity fields are derived and the effect of fractional parameters upon the velocity field is depicted graphically.展开更多
文摘The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape fimction. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.
文摘This paper presents a study of visco-elastic flow of an incompressible generalized Oldroyd-B fluid between two infinite parallel plates in which the constitutive equation involves fractional order time derivative. The solutions of field equations are being obtained for the motion of the said fluid between two parallel plates where the lower plate starts to move with steady velocity and the upper plate remains fixed in the first problem and the upper plate oscillates with constant frequency and the other being at rest in the second problem. The exact solutions for the velocity field are obtained by using the Laplace transform and finite Fourier Sine transform technique in terms of Mittag Leffler and generalised functions. The analytical expression for the velocity fields are derived and the effect of fractional parameters upon the velocity field is depicted graphically.