Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.Th...Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.The microstructure ofdroplets was observed by optical microscopy(OM)and electro backscatter diffraction(EBSD).The dendrite feature of singledroplets depends on solidification rate,cooling medium and flight distance.When droplets collide with each other at temperaturesbetween solidus and liquidus,the dendrites and grains are refined obviously possibly because the collision enhances the heat transfer.The cooling rate of colliding droplets is estimated to be more than4×104K/s based on a Newton’s cooling model.The dendritesgrow along the colliding direction because of the temperature gradient induced by the internal flow inside the droplets.展开更多
In the printed contribution some basic modeling equations for the droplet behavior have not been given correctly. The authors apologize for this error. The computational model used to derive the results discussed in t...In the printed contribution some basic modeling equations for the droplet behavior have not been given correctly. The authors apologize for this error. The computational model used to derive the results discussed in the paper is based on a thermal and a kinetic model for single droplet behavior in flight. The corrections are as follows.展开更多
基金Project(51301143)supported by the National Natural Science Foundation of ChinaProject(2014M560727)supported by the National Postdoctoral Foundation of China+1 种基金Project(2015GZ0228)supported by the Sichuan Province Science-Technology Support Plan,ChinaProject(2682014CX001)supported by the Science and Technology Innovation Project of SWJTU University,China
文摘Different sized single droplets of Cu-6%Sn alloy were prepared by drop on demand(DOD)technique.The secondarydendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula.The microstructure ofdroplets was observed by optical microscopy(OM)and electro backscatter diffraction(EBSD).The dendrite feature of singledroplets depends on solidification rate,cooling medium and flight distance.When droplets collide with each other at temperaturesbetween solidus and liquidus,the dendrites and grains are refined obviously possibly because the collision enhances the heat transfer.The cooling rate of colliding droplets is estimated to be more than4×104K/s based on a Newton’s cooling model.The dendritesgrow along the colliding direction because of the temperature gradient induced by the internal flow inside the droplets.
文摘In the printed contribution some basic modeling equations for the droplet behavior have not been given correctly. The authors apologize for this error. The computational model used to derive the results discussed in the paper is based on a thermal and a kinetic model for single droplet behavior in flight. The corrections are as follows.