Four shape memory alloys of Cu-Zn-Ni, in the range of 35-55 wt% of Cu, 43-60 wt% Zn and 2-9 wt% Ni, were prepared by ingot metallurgy route in an induction furnace under an inert atmosphere. The shape memory effect wa...Four shape memory alloys of Cu-Zn-Ni, in the range of 35-55 wt% of Cu, 43-60 wt% Zn and 2-9 wt% Ni, were prepared by ingot metallurgy route in an induction furnace under an inert atmosphere. The shape memory effect was tested by bend test. The alloys were further tested for its corrosion behavior in fresh water, Hank’s solution and sea water. From the results it was observed that the alloys exhibit high corrosion resistance in fresh water when compared to Hank’s solution and sea water. And it was also observed that the alloys exhibit better corrosion resistance in Hank’s solution than in sea water.展开更多
The microstructure, martensitic transformation behavior and shape memory effect of Cu-Zn-Ni shape memory alloy have been studied by X-ray diffraction (XRD), optical microscopy (OM) and differential scanning calorimetr...The microstructure, martensitic transformation behavior and shape memory effect of Cu-Zn-Ni shape memory alloy have been studied by X-ray diffraction (XRD), optical microscopy (OM) and differential scanning calorimetry (DSC). The results show that the recrystallization occurs in the hot-rolled Cu-Zn-Ni alloy by annealing at 800℃ and alloy is primarily composed of martensite. A reverse martensite transformation temperature higher than 100℃ upon heating has been detected. The alloys exhibit good ductility and shape memory effect (SME). The results obtained are discussed in detail.展开更多
文摘Four shape memory alloys of Cu-Zn-Ni, in the range of 35-55 wt% of Cu, 43-60 wt% Zn and 2-9 wt% Ni, were prepared by ingot metallurgy route in an induction furnace under an inert atmosphere. The shape memory effect was tested by bend test. The alloys were further tested for its corrosion behavior in fresh water, Hank’s solution and sea water. From the results it was observed that the alloys exhibit high corrosion resistance in fresh water when compared to Hank’s solution and sea water. And it was also observed that the alloys exhibit better corrosion resistance in Hank’s solution than in sea water.
文摘The microstructure, martensitic transformation behavior and shape memory effect of Cu-Zn-Ni shape memory alloy have been studied by X-ray diffraction (XRD), optical microscopy (OM) and differential scanning calorimetry (DSC). The results show that the recrystallization occurs in the hot-rolled Cu-Zn-Ni alloy by annealing at 800℃ and alloy is primarily composed of martensite. A reverse martensite transformation temperature higher than 100℃ upon heating has been detected. The alloys exhibit good ductility and shape memory effect (SME). The results obtained are discussed in detail.