期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
First principles study of post-boron carbide phases with icosahedra broken
1
作者 Ming-Wei Chen Zhao Liang +3 位作者 Mei-Ling Liu uppalapati pramod kumar Chao Liu Tong-Xiang Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期214-221,共8页
Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot s... Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot spot of research. Previous studies have unmasked the essential cause of B4C failure, i.e., its structure will change subjected to impact, especially under the non-hydrostatic pressure and shear stress. However, the change of structure has not been clearly understood nor accurately determined. Here in this paper, we propose several B4C polymorphs including B4C high pressure phases with non-icosahedra, which are denoted as post-B4C and their structures are formed due to icosahedra broken and may be obtained through high pressure and high temperature (HPHT). The research of their physical properties indicates that these B4C polymorphs have outstanding mechanical and electrical properties. For instance, aP10, mC10, mP20, and oP10-B4C are conductive superhard materials. We hope that our research will enrich the cognition of high pressure structural deformation of B4C and broaden the application scope of B4C. 展开更多
关键词 boron carbide structural transformation icosahedra broken physical properties first principles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部