期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Methods for Two-Fluid Dispersive Fast MHD Phenomena
1
作者 Bhuvana Srinivasan Ammar Hakim uri shumlak 《Communications in Computational Physics》 SCIE 2011年第6期183-215,共33页
The finite volume wave propagation method and the finite element RungeKutta discontinuous Galerkin(RKDG)method are studied for applications to balance laws describing plasma fluids.The plasma fluid equations explored ... The finite volume wave propagation method and the finite element RungeKutta discontinuous Galerkin(RKDG)method are studied for applications to balance laws describing plasma fluids.The plasma fluid equations explored are dispersive and not dissipative.The physical dispersion introduced through the source terms leads to the wide variety of plasma waves.The dispersive nature of the plasma fluid equations explored separates the work in this paper from previous publications.The linearized Euler equations with dispersive source terms are used as a model equation system to compare the wave propagation and RKDG methods.The numerical methods are then studied for applications of the full two-fluid plasma equations.The two-fluid equations describe the self-consistent evolution of electron and ion fluids in the presence of electromagnetic fields.It is found that the wave propagation method,when run at a CFL number of 1,is more accurate for equation systems that do not have disparate characteristic speeds.However,if the oscillation frequency is large compared to the frequency of information propagation,source splitting in the wave propagation method may cause phase errors.The Runge-Kutta discontinuous Galerkin method provides more accurate results for problems near steady-state as well as problems with disparate characteristic speeds when using higher spatial orders. 展开更多
关键词 Two-fluid plasma model 5 moment discontinuous Galerkin high-resolution wave propagation dispersive source terms hyperbolic conservation laws dispersive Euler SOLITON Zpinch
原文传递
A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations
2
作者 John Loverich Ammar Hakim uri shumlak 《Communications in Computational Physics》 SCIE 2011年第2期240-268,共29页
A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented.The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time ... A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented.The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme.The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock[1]and existing numerical solutions to the GEM challenge magnetic reconnection problem[2].The algorithm can be generalized to arbitrary geometries and three dimensions.An approach to maintaining small gauge errors based on error propagation is suggest. 展开更多
关键词 PLASMA TWO-FLUID 5 moment discontinuous Galerkin electrostatic shock electromagnetic shock magnetic reconnection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部