期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluating the Impact of Different Tillage Regimes and Nitrogen Levels on Yield and Yield Components of Maize (Zea mays L.) 被引量:1
1
作者 Muhammad Naeem Shahid M. Shahid Ibni Zamir +5 位作者 Ihtisham-Ul Haq M. Kamran Khan Mazhar Hussain usman afzal M. Asim Ihtisham Ali 《American Journal of Plant Sciences》 2016年第6期789-797,共9页
A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, Un... A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, University of Agriculture, Faisalabad. The experiment was laid out in RCBD (Randomized Complete Block Design), with split plot arrangement having three replications. The experiment was comprised of three tillage regimes (Minimum, Conventional and Deep) and three nitrogen levels viz: 100, 200 and 300 kg&bull;ha<sup>-1</sup>. Urea was used as a source of nitrogen, sulphate of potash as a source of potassium and triple super phosphate as a source of phosphorous. The amount of phosphorous and potash was constant in all the treatments i.e. 125 kg&bull;ha<sup>-1</sup> and 100 kg&bull;ha<sup>-1</sup> respectively. Results of present study are summarized as yield parameters are significantly affected by different nitrogen levels and tillage regimes. Maximum number of plants at harvest (7.93), number of grain rows per cob (17.70), number of grains per row (34.31), number of grains per cob (678.58), and cob weight (187.50 g) were observed in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. 1000-grain weight (275.52 g), biological yield (15.66 t&bull;ha<sup>-1</sup>), grain yield (6.16 t&bull;ha<sup>-1</sup>) and dried stalk yield (9.91 t&bull;ha<sup>-1</sup>) were observed maximum in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. Harvest index significantly affected by tillage regimes and maximum harvest index (39.58%) were recorded in deep tillage which was statistically at par with conventional tillage (38.83%). It was concluded that higher grain yield of maize can be obtained by deep tillage with the application of 200 kg&bull;ha<sup>-1</sup> nitrogen application under the prevailing conditions of Faisalabad. 展开更多
关键词 Tillage Regimes Nitrogen Levels Deep Tillage Biological Yield Harvest Index
下载PDF
Quantitative Behaviour of Guar (Cymopsis tetragnolobus L.) to Various Tillage Systems and Mulches and Soil Physical Properties
2
作者 M. ShahidIbni Zamir Muhammad Aamir Khan +9 位作者 Mazhar Hussain Ihtishamul Haq M. Kamran Khan Qamaruz Zaman usman afzal Naveed Islam M. Asim Ihtisham Ali Husnain Khan Khalid Iqbal 《American Journal of Plant Sciences》 2016年第7期1040-1045,共6页
A field study was conducted to evaluate the effect of organic mulches and tillage practices on growth, yield of cluster bean and soil physical properties. Experiment was comprised of two factors: A (Tillage), B (Mulch... A field study was conducted to evaluate the effect of organic mulches and tillage practices on growth, yield of cluster bean and soil physical properties. Experiment was comprised of two factors: A (Tillage), B (Mulches). Factor A was assigned to main plot and consisted of two treatments (Minimum tillage and Conventional tillage). Factor B was assigned to sub plot and consisted of four treatments (no mulch, wheat straw mulch, grass clipping mulch and saw dust mulch). The mulching materials were partially incorporated in the field after germination of crop. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangement having three replications. Control treatment was kept for comparison. All other agronomic practices were kept standardized and consistent for all the treatments. Data regarding growth and yield components were collected and analyzed statistically by fisher analysis of variance and treatment significance was measured by significant difference test at 5% probability level. The factors, tillage and mulches significantly affected growth, yield, yield parameters and soil physical properties. Maximum plant population (31.7 m<sup>2</sup>), plant height (159 cm), branches per plant (18.9), cluster per plant (15.88), grains per pod (7.3), 1000-grain weight (34.6 g), grain yield (1.9 t&bull;ha<sup>-1</sup>), biological yield (9.91 t&bull;ha<sup>-1</sup>) and harvest index (19.15) was recorded in conventional tillage comparative to minimum tillage. Mulches also affected grain yield, and maximum grain yield was recorded in wheat straw mulch (1.88 t&bull;ha<sup>-1</sup>) followed by grass clipping mulch (1.81 t&bull;ha<sup>-1</sup>) and saw dust mulch (1.76 t&bull;ha<sup>-1</sup>) while minimum grain yield was recorded in control without mulch application (1.67 t&bull;ha<sup>-1</sup>). Tillage and mulches interactively affect pH, soil organic matter contents, electrical conductivity and soil bulk density. Mulches and minimum tillage improved soil physical properties. Highest BCR was obtained from conventional tillage without mulch and lowest calculated from minimum tillage with saw dust application. The conclusion is that the mulching and conventional tillage improves cluster bean yield about 1%. 展开更多
关键词 GUAR MULCH TILLAGE Soil Properties
下载PDF
Impact of Different Zinc Application Methods on Yield and Yield Components of Various Wheat (<i>Triticum aestivum</i>L.) Cultivars
3
作者 usman afzal Muhammad Shahid Ibni Zamir +3 位作者 Shan Mohi Ud Din Aqib Bilal Muhammad Salahuddin Shahid Iqbal Khan 《American Journal of Plant Sciences》 2017年第13期3502-3512,共11页
To evaluate the impact of different zinc application methods on yield and yield components of various wheat cultivars, a field experiment was carried out at Student’s Farm, Department of Agronomy, University of Agric... To evaluate the impact of different zinc application methods on yield and yield components of various wheat cultivars, a field experiment was carried out at Student’s Farm, Department of Agronomy, University of Agriculture Faisalabad, during winter 2014-2015. The experiment was laid out in RCBD (Randomized Complete Block Design) with factorial arrangement. In this experiment, all the treatments were replicated three times, using the net plot size of 1.8 m × 5.0 m. The experiment comprised of two factors. Factor A consists of two varieties: Faisalabad-2008 and Punjab-2011. While, Factor B consists of different methods of zinc application, control, zinc application in soil before planting 23 kg·ha-1, zinc foliar application, 4% ZnSO4 solution at two stages (tillering and stem elongation stage). The data regarding different parameters were collected and analyzed from the crop using standard procedures. Regarding the impact of zinc application method maximum plant height at maturity (103.6 cm), total number of tillers (564.67 m-2), spike length (10.83 cm), number of spikelets spike-1 (19.50), number of grains spike-1 (50.36), 1000-grain weight (34.16 g), biological yield (11.93 t·ha-1), grain yield (6.00 t·ha-1) and harvest index (39.25%) were recorded in treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages. Similarly, grain zinc contents (33.11 mg·kg-1), grain protein contents (10.1%) and grain carbohydrate contents (64.23%) were also observed in the treatment where zinc was applied both in the soil before planting and by foliar application on later growth stages, which is better than all other treatments. In case of wheat varieties, Faisalabad-2008 performed better than Punjab-2011, with maximum method maximum total number of tillers (460.67 m-2), spike length (9.70 cm), number of grains spike-1 (48.80), 1000-grain weight (33.81 g), biological yield (10.32 t·ha-1), grain yield (5.0 t·ha-1) and harvest index (33.93%). It is concluded that sowing of wheat cultivar Faisalabad-2008 + application of zinc in soil before planting with foliar application at later stages (tillering and stem elongation stage) of wheat could give better results in terms of yield. 展开更多
关键词 WHEAT ZINC Application Methods ZINC Contents
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部