期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Achieving exceptional wear resistance in a crack-free high-carbon tool steel fabricated by laser powder bed fusion without pre-heating
1
作者 konrad kosiba Daniel Wolf +12 位作者 Matthias Bönisch kai Neufeld Ruben Hühne Tobias Gustmann Jozef Bednarčík Hongyu Chen Xiaoliang Han Volker Hoffmann Lukas Beyer uta kühn Sergio Scudino Lars Giebeler Julia k.Hufenbach 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期1-19,共19页
Laser powder bed fusion(LPBF)for the fabrication of dense components used for tooling applications,is highly challenging.Residual stresses,which evolve in the additively manufactured part,are inherent to LPBF processi... Laser powder bed fusion(LPBF)for the fabrication of dense components used for tooling applications,is highly challenging.Residual stresses,which evolve in the additively manufactured part,are inherent to LPBF processing.An additional stress contribution in high-carbon steels arises from the austenite-to-martensite phase transformation,which may eventually lead to cracking or even delamination.As an alternative to pre-heating the base plate,which is not striven by industry,lowering the martensite content which forms in the part,is essential for the fabrication of dense parts by LPBF of high-carbon tool steels which are then adapted to LPBF.In this study,a successful strategy demonstrates the processing of the Fe85Cr4Mo1V1W8C1(wt%)high-carbon steel by LPBF into dense parts(99.8%).The hierarchical microstructure consists of austenitic and martensitic grains separated by elemental segregations in which nanoscopic carbide particles form a network.A high density of microsegregation was observed at the molten pool boundary ultimately forming a superstructure.The LPBF-fabricated steel shows a yield strength,ultimate compressive stress,and total strain of 1210 MPa,3556 MPa,and 27.4%,respectively.The mechanical and wear performance is rated against the industrially employed and highly wear-resistant 1.2379 tool steel taken as the reference.Despite its lower macro-hardness,the LPBF steel(58.6 HRC,0.0061 mm^(3) Nm^(-1))shows a higher wear resistance than the reference steel(62.6 HRC,0.0078 mm^(3) Nm^(-1)).This behavior results from the wear-induced formation of martensite in a microscale thick layer directly at the worn surface,as it was proven via high-energy X-ray diffraction mapping. 展开更多
关键词 Additive manufacturing Laser powder bed fusion Steel Wear TRIP
原文传递
CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting 被引量:1
2
作者 Liang Deng Long Zhang +6 位作者 konrad kosiba RenéLimbach Lothar Wondraczek Gang Wang Dongdong Gu uta kühn Simon Pauly 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期139-150,共12页
Monolithic bulk metallic glass and glass matrix composites with a relative density above 98%were produced by processing Cu_(46)Zr_(46)Al_(8)(at.%)via selective laser melting(SLM).Their microstructures and mechanical p... Monolithic bulk metallic glass and glass matrix composites with a relative density above 98%were produced by processing Cu_(46)Zr_(46)Al_(8)(at.%)via selective laser melting(SLM).Their microstructures and mechanical properties were systematically examined.B2 CuZr nanocrystals(30-100 nm in diameter)are uniformly dispersed in the glassy matrix when SLM is conducted at an intermediate energy input.These B2 CuZr nanocrystals nucleate the oxygen-stabilized big cube phase during a remelting step.The presence of these nanocrystals increases the structural heterogeneity as indirectly revealed by mircrohardness and nanoindentation measurements.The corresponding maps in combination with calorimetric data indicate that the glassy phase is altered by the processing conditions.Despite the formation of crystals and a high overall free volume content,all additively manufactured samples fail at lower stress than the as-cast glass and without any plastic strain.The inherent brittleness is attributed to the presence of relatively large pores and the increased oxygen content after selective laser melting. 展开更多
关键词 Selective laser melting CuZr-based glass Bulk metallic glass matrix composites Phase formation Mechanical properties
原文传递
Laser additive manufactured high-performance Fe-based composites with unique strengthening structure 被引量:1
3
作者 Hongyu Chen Dongdong Gu +3 位作者 Liang Deng Tiwen Lu uta kühn konrad kosiba 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第30期242-252,共11页
Steel matrix composites(SMCs),reinforced by ceramic particles,have received a consistent attention in recent years.Using conventional methods to prepare SMCs is generally challenging,and the mechanical properties of c... Steel matrix composites(SMCs),reinforced by ceramic particles,have received a consistent attention in recent years.Using conventional methods to prepare SMCs is generally challenging,and the mechanical properties of conventionally fabricated SMCs are limited.In this study,we successfully fabricated highperformance SMCs by laser powder bed fusion(LPBF)of a composite powder consisting of Fe-based alloy powder and submicron-sized WC particles.The effect of laser energy density on the phase formation,microstructural evolution,overall density and resulting mechanical properties of LPBF-fabricated composites was investigated.The present results show that a novel Fe_(2)W_(4)C carbidic network precipitates in the solidified microstructure entailing segregations along the boundaries of cellular sub-grains.The presence of this carbidic network hampers the growth of sub-grains even at elevated temperatures,and hence,stabilizes the grain size though prepared at a broad range of different energy densities.The exact distribution of the Fe_(2)W_(4)C carbides depends on the employed laser energy densities,as for instance they are more uniformly distributed at higher energy input.The density of LPBF samples reaches the maximum value of 99.4%at 150 J/mm^(3).In this parameter set,high microhardness of~753 HV,compression strength of~3350 MPa and fracture strain of~24.4%are obtained.The enhanced mechanical properties are ascribed to less metallurgical defects,higher volume fraction of the martensitic phase and increasing pile-up dislocations resulting from the pinning effect by Fe_(2)W_(4)C carbide. 展开更多
关键词 Laser additive manufacturing Laser powder bed fusion Steel matrix composite MICROSTRUCTURES Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部