期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Plant xylem hydraulics:What we understand,current research,and future challenges 被引量:16
1
作者 Martin D. Venturas John S. Sperry uwe g. hacke 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第6期356-389,共34页
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water tran... Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connec- tion with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality. 展开更多
关键词 William J. Lucas University of California Davis USAReceived Jan. 10 2017 Accepted Mar. 9 2017 Online on Mar. 14 2017
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部