Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Re...Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.展开更多
基金supported by the German Research Foundation DFG within the Cluster of Excellence "Integrative Production Technology for High-Wage Countries
文摘Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.