期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于联邦模型迁移的不同规格滚动轴承故障诊断方法
1
作者 康守强 肖杨 +3 位作者 王玉静 王庆岩 梁欣涛 v.i.mikulovich 《振动与冲击》 EI CSCD 北大核心 2023年第22期184-192,共9页
数据隐私与数据安全问题逐渐受到社会关注,各用户隐私的滚动轴承振动数据存在孤岛且不共享的问题,同时不同规格滚动轴承振动数据分布差异大、部分已知标签数据稀缺,使得诊断准确率不高。针对上述问题,提出一种基于联邦模型迁移的不同规... 数据隐私与数据安全问题逐渐受到社会关注,各用户隐私的滚动轴承振动数据存在孤岛且不共享的问题,同时不同规格滚动轴承振动数据分布差异大、部分已知标签数据稀缺,使得诊断准确率不高。针对上述问题,提出一种基于联邦模型迁移的不同规格滚动轴承故障诊断框架。该方法对多个用户振动数据做短时傅里叶变换,构建时频图数据集;各用户训练本地模型并将模型参数上传至服务器,同时引入差值更新和参数稀疏化算法改进联邦学习中本地模型参数传递策略;服务器采用联邦平均算法聚合模型参数并更新本地模型,迭代后建立用于迁移学习的共享模型;提出逐层解冻策略保留共享模型部分参数并发送给每个用户,再利用本地数据微调共享模型,获得适用于每个用户的个性化模型。经试验验证,所提方法在数据孤岛和标签稀缺的前提下,可实现不同规格滚动轴承故障诊断,并具有较高的准确率和良好的泛化性能。 展开更多
关键词 联邦学习 迁移学习 滚动轴承 故障诊断 不同规格
下载PDF
基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法 被引量:67
2
作者 康守强 王玉静 +2 位作者 杨广学 宋立新 v.i.mikulovich 《中国电机工程学报》 EI CSCD 北大核心 2011年第14期96-102,共7页
滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率。提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法。该方法对各状态振动信号进行经验模态分解... 滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率。提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法。该方法对各状态振动信号进行经验模态分解,得到一系列固有模态函数和一个残余分量。经验模态分解方法具有分解自适应性和分解唯一性。对每个固有模态函数建立自回归模型,分别采用Yule-Walker和Ulrych-Clayton两种方法求得模型参数和残差方差,并以此作为各类状态信号的特征矩阵,输入到改进的超球多类支持向量机分类器,判断滚动轴承故障位置及性能退化程度。实验结果表明,提出的方法可同时实现滚动轴承故障位置及性能退化程度的智能诊断,且基于经验模态分解结合自回归模型的Ulrych-Clayton参数估计进行特征提取的诊断方法识别率更高。 展开更多
关键词 非平稳信号 经验模态分解 多类支持向量机 滚动轴承 性能退化程度
下载PDF
基于超球球心间距多类支持向量机的滚动轴承故障分类 被引量:19
3
作者 康守强 王玉静 +3 位作者 姜义成 杨广学 宋立新 v.i.mikulovich 《中国电机工程学报》 EI CSCD 北大核心 2014年第14期2319-2325,共7页
为了降低滚动轴承故障智能分类的训练时间并提高分类精度,提出了一种滚动轴承正常、内、外环故障及不同故障严重程度的多状态分类方法。该方法首先采用峭度值结合相关系数法确定集合经验模态分解结果中包含主要状态信息的固有模态函数;... 为了降低滚动轴承故障智能分类的训练时间并提高分类精度,提出了一种滚动轴承正常、内、外环故障及不同故障严重程度的多状态分类方法。该方法首先采用峭度值结合相关系数法确定集合经验模态分解结果中包含主要状态信息的固有模态函数;再将其组成特征矩阵,利用奇异值分解所得奇异值作为特征向量;最后在采用改进分类规则的超球多类支持向量机分类时,提出由各状态超球球心间距中的最值来确定多类分类器核参数的选取范围,缩小选取区间,最终实现滚动轴承的多状态分类。实验结果表明,提出的滚动轴承多状态分类方法可以减少分类器的训练时间,提高分类精度。 展开更多
关键词 滚动轴承 故障分类 多类支持向量机 超球秋心间距 经验模态分解
下载PDF
基于特征迁移学习的变工况下滚动轴承故障诊断方法 被引量:48
4
作者 康守强 胡明武 +2 位作者 王玉静 谢金宝 v.i.mikulovich 《中国电机工程学报》 EI CSCD 北大核心 2019年第3期764-772,955,共10页
针对滚动轴承尤其是变工况条件下很难或无法获取大量带标签的振动数据,以致诊断准确率低的问题,提出一种基于变分模态分解(variationalmodedecomposition,VMD)及多特征构造和迁移学习相结合的滚动轴承故障诊断方法。该方法利用VMD对滚... 针对滚动轴承尤其是变工况条件下很难或无法获取大量带标签的振动数据,以致诊断准确率低的问题,提出一种基于变分模态分解(variationalmodedecomposition,VMD)及多特征构造和迁移学习相结合的滚动轴承故障诊断方法。该方法利用VMD对滚动轴承各状态振动信号进行分解,得到一系列固有模态函数,对其构成的矩阵进行奇异值分解求奇异值及奇异值熵,再结合振动信号的时域、频域特征构造多特征集。同时引入半监督迁移成分分析方法(semisupervised transfer component analysis,SSTCA),并对其核函数进行多核构造,将不同工况样本特征共同映射到一个共享再生核Hilbert空间,进而提高数据类内紧凑性和类间区分性。采用最大均值差异嵌入法选择更有效的数据作为源域,将源域特征样本输入支持向量机(supportvectormachine,SVM)进行训练,测试映射后的目标域特征样本。实验表明,所提多核SSTCA-SVM方法与其他方法相比较,在变工况下滚动轴承多状态分类中具有更高准确率。 展开更多
关键词 变工况 滚动轴承 半监督迁移成分分析(SSTCA) 迁移学习 变分模态分解(VMD)
下载PDF
基于无监督特征对齐的变负载下滚动轴承故障诊断方法 被引量:22
5
作者 康守强 邹佳悦 +2 位作者 王玉静 谢金宝 v.i.mikulovich 《中国电机工程学报》 EI CSCD 北大核心 2020年第1期274-281,共8页
针对滚动轴承实际工作中缺少某种负载数据,使得源领域数据与目标领域数据属于不同分布,以及目标领域样本不含标签的问题,提出一种多域特征构建和无监督特征对齐的滚动轴承故障诊断方法。该方法利用变分模态分解结合奇异值分解获取振动... 针对滚动轴承实际工作中缺少某种负载数据,使得源领域数据与目标领域数据属于不同分布,以及目标领域样本不含标签的问题,提出一种多域特征构建和无监督特征对齐的滚动轴承故障诊断方法。该方法利用变分模态分解结合奇异值分解获取振动信号的时频特征,再结合振动信号时域、频域特征构建多域特征集;引入迁移学习中能够实现无监督领域适应的子空间对齐(subspace alignment,SA)算法并进行改进,提出将核映射方法与SA算法相结合。将训练数据和测试数据映射到相同高维空间,在高维空间的子空间进行特征对齐,以增加数据类间区分性,实现不同负载下源领域特征向目标领域特征对齐。实验研究表明,与部分降维方法及无监督迁移学习方法相比,所提方法在目标领域无标签的情况下,能够利用滚动轴承已知负载数据识别出其他负载数据对应的状态,并具有较高的故障诊断准确率。 展开更多
关键词 故障诊断 迁移学习 无监督领域适应 滚动轴承 变负载
下载PDF
基于改进深度森林的滚动轴承剩余寿命预测方法 被引量:25
6
作者 王玉静 王诗达 +2 位作者 康守强 王庆岩 v.i.mikulovich 《中国电机工程学报》 EI CSCD 北大核心 2020年第15期5032-5042,共11页
针对现有人工智能方法在滚动轴承剩余寿命预测中存在精度差、运算效率低的问题,提出一种基于深层迭代特征(deep iterative features,DIF)级联CatBoost(cascade catboost,CasCatBoost)的滚动轴承剩余寿命预测新方法。该方法是一种改进的... 针对现有人工智能方法在滚动轴承剩余寿命预测中存在精度差、运算效率低的问题,提出一种基于深层迭代特征(deep iterative features,DIF)级联CatBoost(cascade catboost,CasCatBoost)的滚动轴承剩余寿命预测新方法。该方法是一种改进的新型深度森林算法,首先对由快速傅里叶变换得到的滚动轴承频域信号进行迭代计算,得到迭代特征。为了减小内存的消耗,将深度森林中的多粒度扫描结构替换为卷积神经网络,提取迭代特征的深层特征,并构建性能退化特征集。然后对可实现GPU并行加速的单一CatBoost模型进行集成,引入决定系数R2构建CasCatBoost结构以提高模型的表征能力,选取模型最后一个级联层的平均寿命百分比p表示输出。最后运用一次函数对p进行拟合,预测出轴承的剩余寿命。利用PHM2012数据库对滚动轴承剩余寿命进行预测,所提方法的预测平均误差为10.57%、平均得分为0.426。 展开更多
关键词 滚动轴承 卷积神经网络 深层迭代特征 深度森林 剩余寿命预测
下载PDF
基于FOA-MKSVM的滚动轴承故障分类方法 被引量:7
7
作者 康守强 许林虎 +3 位作者 王玉静 姜义成 杨广学 v.i.mikulovich 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第5期1186-1192,共7页
由于滚动轴承实际各状态数据一般具有不均衡的特点,所以分类时采用单一核函数存在一定的局限性。针对此问题以及支持向量机多参数选择的盲目性,建立一种基于果蝇优化算法的多核支持向量机模型。该模型可以通过核函数权值来调节全局核函... 由于滚动轴承实际各状态数据一般具有不均衡的特点,所以分类时采用单一核函数存在一定的局限性。针对此问题以及支持向量机多参数选择的盲目性,建立一种基于果蝇优化算法的多核支持向量机模型。该模型可以通过核函数权值来调节全局核函数和局部核函数在该模型中的作用,兼具了良好的学习能力和泛化能力。同时,将多核支持向量机参数与果蝇算法中食物的味道浓度值建立一定关系,通过模仿果蝇觅食行为,对各参数进行优化选择。为了验证所提方法的有效性,先利用UCI标准数据集进行实验,再将其应用到滚动轴承故障分类中,并对单核核函数与多核核函数及参数优化算法进行比较。结果表明,提出的方法具有初始化参数少、参数设置简单、全局搜索能力强和分类准确率高的优点,可有效地应用到滚动轴承故障分类中。 展开更多
关键词 支持向量机 多核核函数 果蝇优化算法 滚动轴承
下载PDF
基于协同深度学习的二阶段绝缘子故障检测方法 被引量:32
8
作者 王卓 王玉静 +2 位作者 王庆岩 康守强 v.i.mikulovich 《电工技术学报》 EI CSCD 北大核心 2021年第17期3594-3604,共11页
针对现有绝缘子故障检测模型受航拍图像中复杂背景干扰导致准确率低的问题,提出一种基于协同深度学习的二阶段绝缘子故障检测方法。该方法将全卷积网络(FCN)与YOLOv3目标检测算法相协同,第一阶段,利用FCN算法对航拍图像预处理,设计跳跃... 针对现有绝缘子故障检测模型受航拍图像中复杂背景干扰导致准确率低的问题,提出一种基于协同深度学习的二阶段绝缘子故障检测方法。该方法将全卷积网络(FCN)与YOLOv3目标检测算法相协同,第一阶段,利用FCN算法对航拍图像预处理,设计跳跃结构融合浅层图像特征与深层语义特征,构建8倍上采样的绝缘子分割模型,结合图像像素逻辑运算,实现绝缘子目标的初步分割,避免背景区域对绝缘子故障检测的干扰。在此基础上,第二阶段构建YOLOv3模型进行绝缘子故障检测,以深度神经网络Darknet-53作为特征提取器,借鉴特征金字塔思想,在三个尺度的输出张量上对绝缘子故障进行标记和类别预测,保证模型对不同尺寸的绝缘子故障准确检测。利用K-means++聚类算法优化YOLOv3的锚点框参数(Anchor Boxes),进一步提升检测精度。实验结果表明,基于协同深度学习的二阶段方法能够有效克服复杂背景的干扰,在绝缘子故障检测中平均准确率(MAP)高达96.88%,较原始YOLOv3算法MAP值提升了4.65%。 展开更多
关键词 绝缘子 故障检测 全卷积网络 YOLOv3 K-means++
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部