期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved DHOA-Fuzzy Based Load Scheduling in IoT Cloud Environment
1
作者 R.Joshua Samuel Raj v.ilango +4 位作者 Prince Thomas V.R.Uma Fahd N.Al-Wesabi Radwa Marzouk Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第5期4101-4114,共14页
Internet of things (IoT) has been significantly raised owing to thedevelopment of broadband access network, machine learning (ML), big dataanalytics (BDA), cloud computing (CC), and so on. The development of IoTtechno... Internet of things (IoT) has been significantly raised owing to thedevelopment of broadband access network, machine learning (ML), big dataanalytics (BDA), cloud computing (CC), and so on. The development of IoTtechnologies has resulted in a massive quantity of data due to the existenceof several people linking through distinct physical components, indicatingthe status of the CC environment. In the IoT, load scheduling is realistictechnique in distinct data center to guarantee the network suitability by fallingthe computer hardware and software catastrophe and with right utilize ofresource. The ideal load balancer improves many factors of Quality of Service(QoS) like resource performance, scalability, response time, error tolerance,and efficiency. The scholar is assumed as load scheduling a vital problem inIoT environment. There are many techniques accessible to load scheduling inIoT environments. With this motivation, this paper presents an improved deerhunting optimization algorithm with Type II fuzzy logic (IDHOA-T2F) modelfor load scheduling in IoT environment. The goal of the IDHOA-T2F is todiminish the energy utilization of integrated circuit of IoT node and enhancethe load scheduling in IoT environments. The IDHOA technique is derivedby integrating the concepts of Nelder Mead (NM) with the DHOA. Theproposed model also synthesized the T2L based on fuzzy logic (FL) systemsto counterbalance the load distribution. The proposed model finds usefulto improve the efficiency of IoT system. For validating the enhanced loadscheduling performance of the IDHOA-T2F technique, a series of simulationstake place to highlight the improved performance. The experimental outcomesdemonstrate the capable outcome of the IDHOA-T2F technique over therecent techniques. 展开更多
关键词 Load scheduling internet of things cloud computing metaheuristics fuzzy logic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部