期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Co-Doped ZnO Nanoparticles:Structural,Morphological,Optical,Magnetic and Antibacterial Studies 被引量:2
1
作者 N.Mohamed Basith J.Judith Vijaya +3 位作者 L.John Kennedy M.Bououdina S.Jenefar v.kaviyarasan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第11期1108-1117,共10页
Un-doped and Co-doped ZnO nanoparticles (NPs) with different weight ratios (0.5, 1.0, 1.5, and 2.0 wt% of Co) were synthesized by a facile and rapid microwave-assisted combustion method using urea as a fuel. The p... Un-doped and Co-doped ZnO nanoparticles (NPs) with different weight ratios (0.5, 1.0, 1.5, and 2.0 wt% of Co) were synthesized by a facile and rapid microwave-assisted combustion method using urea as a fuel. The prepared NPs were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). XRD patterns refined by the Rietveld method indicated that Co-doped ZnO had a single pure phase with wurtzite structure suggesting that Co^2+ ions would occupy Zn^2+ ionic sites within the ZnO crystal lattice. Interestingly, the morphology was found to convert substantially from grains to nanoparticles with close-packed periodic array of hexagonal-like shape and then into randomly distributed spherical NPs with the variation of Co-content. The optical band gap estimated using DRS was found to be red-shifted from 3.22 eV for the un-doped ZnO NPs then decrease up to 2.88 eV with increasing Co-content. PL spectra showed a strong green emission band thus confirming the formation of pure single ZnO phase. Magnetic studies showed that Co-doped ZnO NPs exhibited room temperature ferromagnetism (RTFM) and that the saturation magnetization attained a maximum value of 2.203 × 10^-3 emu/g for the highest Co-content. The antibacterial studies performed against a set of bacterial strains showed that the 2.0 wt% Co-doped ZnO NPs possessed a greater antibacterial effect. 展开更多
关键词 NANOPARTICLES Optical properties FERROMAGNETISM Antibacterial activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部