Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their appli...Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.展开更多
基金kindly supported by the Russian Foundation for Basic Research (RFBR) (No. 16-05-00033A)
文摘Traditional methods of coal thermal resistance characterization are informative but considerably timeconsuming and require utilization of a complex and expensive equipment. This limits the effectiveness of their application. In this paper, authors experimentally investigated potential application of thermally stimulated acoustic emission method for developing of relatively simple and rapid coals thermal resistance assessment method. Features of thermally stimulated acoustic emission of anthracite, lignites and bituminous coal samples subject to cyclic thermal loading have been experimentally investigated.For the first time, it has been shown that there exists a relationship of such patterns with structural parameters and properties of the coal samples, as well as their thermal resistance. The results indicate the possibility of applying the method of thermally stimulated acoustic emission to control processes of cryogenic disintegration and thermal resistance of fossil coals. The description of the equipment and methodological support needed for the implementation of this method have been provided.