Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron...Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.展开更多
Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise line...Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise linear spring-tnass system. The chaotic behaviour in this system is characterized using bifurcation diagrams and the invariant parameters of the dynamics. We also show that there exists a stochastic analogue of this system, which mimics the dynamical features of its deterministic counterpart. This allows a greater flexibility in practical designs as the chaotic oscillations are obtained either deterministically or stochastically. Also, the oscillations are low dimensional, which reduces the computational resources needed for obtaining the invariant parameters of this system.展开更多
文摘Optical emission from TiO2 plasma, generated by a nanosecond laser is spectroscopically analysed. The main chemical species are identified and the spatio-temporal distribution of the plasma parameters such as electron temperature and density are characterized based on the study of spectral distribution of the line intensities and their broadening characteristics. The parameters of laser induced plasma vary quickly owing to its expansion at low background pressure and the possible deviations from local thermodynamic equilibrium conditions are tested to show its validity.
基金the Council of Scientific and Industrial Research(CSIR),New Delhi for Financial Support through a Senior Research Fellowship(SRF)
文摘Chaotic oscillations are useful in assessing the health of a structure. Hence, simple chaotic systems which can easily be realized mechanically or electro-mechanically are highly desired. We study a new pieeewise linear spring-tnass system. The chaotic behaviour in this system is characterized using bifurcation diagrams and the invariant parameters of the dynamics. We also show that there exists a stochastic analogue of this system, which mimics the dynamical features of its deterministic counterpart. This allows a greater flexibility in practical designs as the chaotic oscillations are obtained either deterministically or stochastically. Also, the oscillations are low dimensional, which reduces the computational resources needed for obtaining the invariant parameters of this system.