The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dend...The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure.The microstructure depended on several process parameters such as stirring intensity,stirring frequency,cooling rate,and melt initial superheat.Through a series of computational studies and controlled experiments,a set of process parameters were identified to produce the best microstructures.Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components.The reheating process was characterized for various reheating cycles using a vertical-type reheating machine.The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet,and the heating was continued until the liquid fraction reached about 50%.These parameters were determined with the help of a computational fluid dynamics(CFD) model of die filling and solidification of the semisolid alloy.The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine.The results show that the castings are near net shape,free from porosity,good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.展开更多
基金The financial support from Ministry of Mines,TIFAC,Department of Science and Technology and Defense Research and Development Organization
文摘The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure.The microstructure depended on several process parameters such as stirring intensity,stirring frequency,cooling rate,and melt initial superheat.Through a series of computational studies and controlled experiments,a set of process parameters were identified to produce the best microstructures.Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components.The reheating process was characterized for various reheating cycles using a vertical-type reheating machine.The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet,and the heating was continued until the liquid fraction reached about 50%.These parameters were determined with the help of a computational fluid dynamics(CFD) model of die filling and solidification of the semisolid alloy.The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine.The results show that the castings are near net shape,free from porosity,good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.