Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inerti...Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inertial confinement fusion,fundamental research,and secondary sources.Understanding the processes of transformation of a porous solid into a plasma is of fundamental interest and is needed for producing materials with desired properties.展开更多
The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created ...The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.展开更多
The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser bea...The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser beamline will provide shaped nanosecond pulses of up to 1.9 kJ at a maximum repetition rate of 1 shot/min.This beamline will provide unique possibilities for high-pressure,high-energy-density physics,warm dense matter,and laser–plasma interaction experiments.Owing to the high repetition rate,it will become possible to obtain considerable improvements in data statistics,in particular,for equation-of-state data sets.The nanosecond beam will be coupled with short sub-picosecond pulses,providing high-resolution diagnostic tools by either irradiating a backlighter target or driving a betatron setup to generate energetic electrons and hard X-rays.展开更多
Processes of laser energy absorption and electron heating in an expanding plasma in the range of irradiances Iλ^2=1015–1016 W·μm^2/cm^2 are studied with the aid of kinetic simulations.The results show a strong...Processes of laser energy absorption and electron heating in an expanding plasma in the range of irradiances Iλ^2=1015–1016 W·μm^2/cm^2 are studied with the aid of kinetic simulations.The results show a strong reflection due to stimulated Brillouin scattering and a significant collisionless absorption related to stimulated Raman scattering near and below the quarter critical density.Also presented are parametric decay instability and resonant excitation of plasma waves near the critical density.All these processes result in the excitation of high-amplitude electron plasma waves and electron acceleration.The spectrum of scattered radiation is significantly modified by secondary parametric processes,which provide information on the spatial localization of nonlinear absorption and hot electron characteristics.The considered domain of laser and plasma parameters is relevant for the shock ignition scheme of inertial confinement fusion.展开更多
Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes o...Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons.Such a regime is of paramount importance for inertial confinement fusion(ICF)and in particular for the shock ignition scheme.In this paper we report on an experiment carried out at the Prague Asterix Laser System(PALS)facility to investigate the extent and time history of stimulated Raman scattering(SRS)and two-plasmon decay(TPD)instabilities,driven by the interaction of an infrared laser pulse at an intensity^1.2×1016 W·cm^-2 with a^100μm scalelength plasma produced from irradiation of a flat plastic target.The laser pulse duration(300 ps)and the high value of plasma temperature(~4 ke V)expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions.Experimental results show that absolute TPD/SRS,driven at a quarter of the critical density,and convective SRS,driven at lower plasma densities,are well separated in time,with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse.Side-scattering SRS,driven at low plasma densities,is also clearly observed.Experimental results are compared to fully kinetic large-scale,two-dimensional simulations.Particle-in-cell results,beyond reproducing the framework delineated by the experimental measurements,reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.展开更多
A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven di...A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform,quasi-static magnetic fields on the millimetre scale.Here,we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter.Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target.Using this dual-axis platform for proton deflectometry,robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.展开更多
基金This work has been funded by the European Union via the Euratom Research and Training Programme(Grant Agreement No 101052200-EUROfusion).
文摘Porous materials offer unique possibilities for the production of plasmas with controlled density profiles for experiments on laser–matter interaction.They are of growing relevance to many applications,such as inertial confinement fusion,fundamental research,and secondary sources.Understanding the processes of transformation of a porous solid into a plasma is of fundamental interest and is needed for producing materials with desired properties.
基金This project was partially supported by the Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)the CAAS project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000778)+3 种基金both from the European Regional Development FundThe results of the LQ1606 project were partially obtained with the financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability IIThe authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.11775033,11875241,11975215,11905204,12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
基金The authors acknowledge support from the projects“Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)”(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)“High Field Initiative(HiFI)”(Grant No.CZ.02.1.01/0.0/0.0/15_003/0000449)both from the European Regional Development Fund.The results of the Project LQ1606 were obtained with financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Program of Sustainability II.
文摘The P3 installation of ELI-Beamlines is conceived as an experimental platform for multiple high-repetition-rate laser beams spanning time scales from femtosecond via picosecond to nanosecond.The upcoming L4n laser beamline will provide shaped nanosecond pulses of up to 1.9 kJ at a maximum repetition rate of 1 shot/min.This beamline will provide unique possibilities for high-pressure,high-energy-density physics,warm dense matter,and laser–plasma interaction experiments.Owing to the high repetition rate,it will become possible to obtain considerable improvements in data statistics,in particular,for equation-of-state data sets.The nanosecond beam will be coupled with short sub-picosecond pulses,providing high-resolution diagnostic tools by either irradiating a backlighter target or driving a betatron setup to generate energetic electrons and hard X-rays.
基金funding from the Euratom Research and Training Programme 2014–2018 under grant agreement No. 633053supported by the project ELITAS (CZ.02.1.01/0.0/0.0/16 013/0001793)+7 种基金by the project High Field Initiative (CZ.02.1.01/0.0/0.0/15 003/ 0000449)from the European Regional Development Fundsupported by the project ADONIS (Advanced research using high intensity laser produced photons and particles), CZ.02.1.01/0.0/0.0/16 019/0000789from the European Regional Development Fundpartially supported by the Center of Advanced Applied Natural Sciences, Reg. No. CZ.02.1.01/0.0/0.0/16 019/0000778by the Operational Program Research, Development and Educationco-financed by the European Structural and Investment Fundsthe state budget of the Czech Republic
文摘Processes of laser energy absorption and electron heating in an expanding plasma in the range of irradiances Iλ^2=1015–1016 W·μm^2/cm^2 are studied with the aid of kinetic simulations.The results show a strong reflection due to stimulated Brillouin scattering and a significant collisionless absorption related to stimulated Raman scattering near and below the quarter critical density.Also presented are parametric decay instability and resonant excitation of plasma waves near the critical density.All these processes result in the excitation of high-amplitude electron plasma waves and electron acceleration.The spectrum of scattered radiation is significantly modified by secondary parametric processes,which provide information on the spatial localization of nonlinear absorption and hot electron characteristics.The considered domain of laser and plasma parameters is relevant for the shock ignition scheme of inertial confinement fusion.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure activity within the ECs seventh Framework Programfunding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053+4 种基金partially supported by the project ELITAS (ELI Tools for Advanced Simulation) CZ.02.1.01/0.0/0.0/16 013/0001793HIFI (High Field Initiative, CZ.02.1.01/0.0/0.0/15 003/0000449)ADONIS (Advanced research using high-intensity laser produced photons and particles, CZ.02.1.01/0.0/0.0/16 019/0000789)ELITAS (ELI Tools for Advanced Simulations,CZ.02.1.01/0.0/0.0/16 013/0001793)financial support from the Czech Ministry of Education, Youth and Sports within grants LTT17015, LM2015083, and CZ.02.1.01/0.0/0.0/16 013/0001552 (EF16 013/0001552)
文摘Laser–plasma interaction(LPI)at intensities 1015–1016 W·cm^-2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons.Such a regime is of paramount importance for inertial confinement fusion(ICF)and in particular for the shock ignition scheme.In this paper we report on an experiment carried out at the Prague Asterix Laser System(PALS)facility to investigate the extent and time history of stimulated Raman scattering(SRS)and two-plasmon decay(TPD)instabilities,driven by the interaction of an infrared laser pulse at an intensity^1.2×1016 W·cm^-2 with a^100μm scalelength plasma produced from irradiation of a flat plastic target.The laser pulse duration(300 ps)and the high value of plasma temperature(~4 ke V)expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions.Experimental results show that absolute TPD/SRS,driven at a quarter of the critical density,and convective SRS,driven at lower plasma densities,are well separated in time,with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse.Side-scattering SRS,driven at low plasma densities,is also clearly observed.Experimental results are compared to fully kinetic large-scale,two-dimensional simulations.Particle-in-cell results,beyond reproducing the framework delineated by the experimental measurements,reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
基金This paper was supported by the LLNL Academic Partnership in ICF,EPSRC grants EP/L01663X/1 and EP/L000644/1the Czech Republic MSMT targeted support of Large Infrastructures+1 种基金ELI Beamlines Project LQ1606 of the National Programme of Sustainability IIThe contribution of the JIHT RAS team was completed within the framework of the Russian Ministry state assignment for Science and Higher Education(topic#01201357846).
文摘A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform,quasi-static magnetic fields on the millimetre scale.Here,we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter.Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target.Using this dual-axis platform for proton deflectometry,robust measurements can be made of the evolution of magnetic fields in a capacitor coil target.