The physical concept of synthetic dimensions has recently been introduced into optics.The fundamental physics and applications are not yet fully understood,and this report explores an approach to optical neural networ...The physical concept of synthetic dimensions has recently been introduced into optics.The fundamental physics and applications are not yet fully understood,and this report explores an approach to optical neural networks using synthetic dimension in time domain,by theoretically proposing to utilize a single resonator network,where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension.The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network,and can be linearly transformed with splitters and delay lines,including the phase modulators,when pulses circulate inside the network.Such linear transformation can be arbitrarily controlled by applied modulation phases,which serve as the building block of the neural network together with a nonlinear component for pulses.We validate the functionality of the proposed optical neural network for the deep learning purpose with examples handwritten digit recognition and optical pulse train distribution classification problems.This proof of principle computational work explores the new concept of developing a photonics-based machine learning in a single ring network using synthetic dimensions,which allows flexibility and easiness of reconfiguration with complex functionality in achieving desired optical tasks.展开更多
Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Br...Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Brillouin spectrometer allows investigators to acquire the Brillouin spectra for turbid samples as well as transparent ones.However,due to strong signal loss induced by the imperfect optical setup,the Brillouin photons are usually immersed in background noise.In this report,we proposed and experimentally demonstrated multiple approaches to enhance the signal collction eficiency.A signal enhancement by>4 times can be observed,enabling ob-servation of ultra-weak signals.展开更多
Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images.Here,for the first time,to our knowledge,we extend those...Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images.Here,for the first time,to our knowledge,we extend those measurements to high-speed imaging,which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale.To overcome detector acquisition rate limitations,we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms.We demonstrate magnetic field wave imaging with micro-scale spatial extent and~400μs temporal resolution.In validating this system,we detected magnetic fields down to 10μT for 40 Hz magnetic fields using single-shot imaging and captured the spatial transit of an electromagnetic needle at streak rates as high as 110μm/ms.This design has the capability to be readily extended to full 3D video acquisition by utilizing compressed sensing techniques and a potential for further improvement of spatial resolution,acquisition speed,and sensitivity.The device opens opportunities to many potential applications where transient magnetic events can be isolated to a single spatial axis,such as acquiring spatially propagating action potentials for brain imaging and remotely interrogating integrated circuits.展开更多
The combined effect of short(picosecond) optical and(nanosecond) electrical pulses on dielectric breakdown is investigated both theoretically and experimentally. It was demonstrated that nanosecond electrical pulses(n...The combined effect of short(picosecond) optical and(nanosecond) electrical pulses on dielectric breakdown is investigated both theoretically and experimentally. It was demonstrated that nanosecond electrical pulses(nsEPs),being applied simultaneously with picosecond optical pulses, reduce the threshold for optical breakdown.Experimental results are discussed with respect to an extended model for opto-electrical-induced breakdown.The newly unveiled effect is expected to play a significant role in spatially confined electroporation and further advances in laser-ablation-based processes while also allowing for measurements of ambipolar diffusion constants.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12122407,11974245,and 12192252)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01-ZX06)+6 种基金partial funding from NSF(Grant Nos.DBI-1455671,ECCS-1509268,and CMMI-1826078)AFOSR(Grant Nos.FA9550-15-1-0517,FA9550-18-1-0141,FA9550-201-0366,and FA9550-20-1-0367)DOD Army Medical Research(Grant No.W81XWH2010777)NIH(Grant Nos.1R01GM127696-01 and 1R21GM142107-01)the Cancer Prevention and Research Institute of Texas(Grant No.RP180588)the sponsorship from Yangyang Development Fundthe support from the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning。
文摘The physical concept of synthetic dimensions has recently been introduced into optics.The fundamental physics and applications are not yet fully understood,and this report explores an approach to optical neural networks using synthetic dimension in time domain,by theoretically proposing to utilize a single resonator network,where the arrival times of optical pulses are interconnected to construct a temporal synthetic dimension.The set of pulses in each roundtrip therefore provides the sites in each layer in the optical neural network,and can be linearly transformed with splitters and delay lines,including the phase modulators,when pulses circulate inside the network.Such linear transformation can be arbitrarily controlled by applied modulation phases,which serve as the building block of the neural network together with a nonlinear component for pulses.We validate the functionality of the proposed optical neural network for the deep learning purpose with examples handwritten digit recognition and optical pulse train distribution classification problems.This proof of principle computational work explores the new concept of developing a photonics-based machine learning in a single ring network using synthetic dimensions,which allows flexibility and easiness of reconfiguration with complex functionality in achieving desired optical tasks.
基金supported by the start-up funds available through Texas A&M Universitysupport of the NIH (Grant#R21EB011703) and the NSF (ECCS Grant#10665620,DBI Grant#10665621 and CBET Grant#10665623).
文摘Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Brillouin spectrometer allows investigators to acquire the Brillouin spectra for turbid samples as well as transparent ones.However,due to strong signal loss induced by the imperfect optical setup,the Brillouin photons are usually immersed in background noise.In this report,we proposed and experimentally demonstrated multiple approaches to enhance the signal collction eficiency.A signal enhancement by>4 times can be observed,enabling ob-servation of ultra-weak signals.
基金National Science Foundation(CMMI-1826078)GrantováAgentura?eskéRepubliky(GA20-28980S)+5 种基金Cancer Prevention and Research Institute of Texas(RP180588)NSF Graduate Research Fellowship(279451)National Institutes of Health(1R01GM127696,1R21CA269099,1R21GM142107)Army Medical Research(W81XWH2010777)Air Force Office of Scientific Research(17RHCOR483,20RHCOR051,FA9550-15-1-0517,FA9550-20-1-0366,FA9550-20-1-0367)U.S.Air Force(FA8650-19-C-6024)。
文摘Nitrogen vacancy diamonds have emerged as sensitive solid-state magnetic field sensors capable of producing diffraction limited and sub-diffraction field images.Here,for the first time,to our knowledge,we extend those measurements to high-speed imaging,which can be readily applied to analyze currents and magnetic field dynamics in circuits on a microscopic scale.To overcome detector acquisition rate limitations,we designed an optical streaking nitrogen vacancy microscope to acquire two-dimensional spatiotemporal kymograms.We demonstrate magnetic field wave imaging with micro-scale spatial extent and~400μs temporal resolution.In validating this system,we detected magnetic fields down to 10μT for 40 Hz magnetic fields using single-shot imaging and captured the spatial transit of an electromagnetic needle at streak rates as high as 110μm/ms.This design has the capability to be readily extended to full 3D video acquisition by utilizing compressed sensing techniques and a potential for further improvement of spatial resolution,acquisition speed,and sensitivity.The device opens opportunities to many potential applications where transient magnetic events can be isolated to a single spatial axis,such as acquiring spatially propagating action potentials for brain imaging and remotely interrogating integrated circuits.
基金DOD Army Medical Research(W81XWH2010777)Army Research Laboratory(W911NF-17-2-0144)+6 种基金Air Force Research Laboratory(FA8650-C-6024)Consortium Research Fellows ProgramCancer Prevention and Research Institute of Texas(RP180588)National Institutes of Health(1R01GM127696-01)Air Force Office of Scientific Research (20RHCOR051, 17RHCOR483, FA9550-15-1-0326, FA9550-18-1-0141, FA9550-18-1-0521, FA9550-20-1-0366, FA9550-20-1-0367)National Science Foundation(CMMI-1826078, DBI1455671, ECCS-1509268)SAIC under Air Force Research Laboratory (AFRL)。
文摘The combined effect of short(picosecond) optical and(nanosecond) electrical pulses on dielectric breakdown is investigated both theoretically and experimentally. It was demonstrated that nanosecond electrical pulses(nsEPs),being applied simultaneously with picosecond optical pulses, reduce the threshold for optical breakdown.Experimental results are discussed with respect to an extended model for opto-electrical-induced breakdown.The newly unveiled effect is expected to play a significant role in spatially confined electroporation and further advances in laser-ablation-based processes while also allowing for measurements of ambipolar diffusion constants.